Two Modes Near-zero Dispersion Flattened Photonic-crystal Fiber

Yuling JI, Qingyong ZHU, Feixue WANG

Abstract


Through massive computer simulation, a photonic-crystal fiber with seven air-hole defects as fiber core is proposed by using the software CUDOS based on the multipole method. In the given fiber parameters, the photonic-crystal fiber’s fundamental and second modes are dispersion flattened simultaneously in the communication O wave band, S wave band and C wave band. It is important in the relative application of multi-mode dispersion flattened photonic-crystal fiber.


Keywords


Photonic-crystal fiber; Double-mode dispersion flatten; Multipole method.

Full Text:

PDF

References


Artłomiej, B., & Iwicki, S. (2017). Nanostructured graded-index core chalcogenide fiber with all-normal dispersion–design and nonlinear simulations. Optics Express, 25(11), 12984-12998. doi.org/10.1364

Gong, T. X., Luan, F., Hu, D. J. J., & Shum, P. (2011). Photonic crystal fibers with high and flattened dispersion. Optics Communications, 284, 4176-4179. doi: 10.1016.

Hoo, Y. L., Jin, W., Ju, J., & Ho, H. L. (2004). Wang, D. N. Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion; Optics Communications, 242(4-6), 327-332. doi:10.1016.

Ji, Y. L., & Liu, M. (2013). Double modes dispersion flattened Photonic crystal Fibers. Laser Journal, 34(4), 48-49.

Klimczak, M., Siwicki, B., Skibinski, P., Pysz, D., Stepien, R., Heidt, A. M., … Buczynski, R. (2014). Coherent supercontinuum generation up to 2.3µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion. Optics Express, 22(15), 18824-18832. doi:10.1364/OE.22. 018824.

Lee, S. J., Ha, W., Park, J. Y., Kim, S., & Oh, K. (2012). A new design of low-loss and ultra-flat zero dispersion photonic crystal fiber using hollow ring defect. Optics Communications, 285, 4082-4087. doi: org/10.1016

Liang, T., Li, W., & Feng, G. Y. (2015). Numerical simulation for optimizing mode shaping and super-continuum flatness of liquid filled seven-core photonic crystal fibers. Optics Communications, 343, 91-96. doi.org/10.1016

Liu, Z. L., Liu, X. D., Li, S. G., Zhou, G. Y., Wang, W., & Hou, L. T. (2007). A broadband ultra flattened chromatic dispersion microstructured fiber for optical communications. Optics Communications, 272, 92-96. doi:10.1016

Saitoh, K., & Koshiba, M. (2004). Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window. Optics Express, 12(10), 2027-2032

Sukhoivanov, I. A., Iakushev, S. O., Shulika, O. V., Andradelucio, J. A., Diez, A., & Andres, M. V. (2014). Supercontinuum generation at 800 nm in all-normal dispersion photonic crystal fiber. Optics Express, 22(24), 30234-30250. doi:10.1364.

Wang, D. D., & Wang, L. L. (2011). Design of Topas microstructured fiber with ultra-flattened chromatic dispersion and high birefringence; Optics Communications, 284, 5568-5571. doi: 10.1016

Wen, Q. Z., Ebendorffheidepriem, H., Monro, T. M., & Afshar, V., S. (2011). Fabrication and supercontinuum generation in dispersion flattened bismuth microstructured optical fiber. Optics Express, 19(22), 21135-21144

White, T. P., Kuhlmey, B. T., McPhedran, R. C., Maystre, D., Renversez, G., Martijn de Sterke, C., & Botten, L. C. (2002). Multipole method for microstructured optical fibers. I Formulation. J. Opt. Soc. Am. B, 19(10), 2322- 2330.

White, T. P., McPhedran, R. C., Botten, L. C., Smith, G. H., & Martijn de Sterke, C. (2001). Calculations of air-guided modes in photonic crystal fibers using the multipole method. Opt. Express, 9(13), 721-732

Yan, P. G., Dong, R. J., Zhang, G. L., Li, H. Q., Ruan, S. C., Wei, H. F., & Luo, J. (2013). Numerical simulation on the coherent time-critical 2–5μm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile. Optics Communications, 293, 133-138. doi.org/10.1016.

Zhang, H. N., & Li, P. (2016). Ultra-flat supercontinuum generation in cascaded photonic crystal fiber with picosecond fiber laser pumping. Optics Communications,372, 60-63. doi: org/10.1016




DOI: http://dx.doi.org/10.3968/10726

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Management Science and Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Share us to:   


Reminder

  • We are currently accepting submissions via email only.

    The registration and online submission functions have been disabled.

    Please send your manuscripts to mse@cscanada.net,or mse@cscanada.org  for consideration.

    We look forward to receiving your work.

 


We only use three mailboxes as follows to deal with issues about paper acceptance, payment and submission of electronic versions of our journals to databases:
caooc@hotmail.com; mse@cscanada.net; mse@cscanada.org

 Articles published in Management Science and Engineering are licensed under Creative Commons Attribution 4.0 (CC-BY).

 MANAGEMENT SCIENCE AND ENGINEERING Editorial Office

Address:1055 Rue Lucien-L'Allier, Unit #772, Montreal, QC H3G 3C4, Canada.

Telephone: 1-514-558 6138
Http://www.cscanada.net Http://www.cscanada.org

Copyright © 2010 Canadian Research & Development Centre of Sciences and Cultures