On Defined by Modulus
Abstract
In this paper we defined the defined by a modulus and exhibit some general properties of the space with an four dimensional infinite regular matrix.
Keywords
Full Text:
PDFReferences
REFERENCES
[01] Apostol, T. (1978). Mathematical analysis. London: Addison-Wesley.
[02] Basarir, M., & Solancan, O. (1999). On some double sequence spaces. J. Indian Acad. Math., 21(2), 193-200.
[03] Bektas, C., & Altin, Y. (2003). The sequence space lM (p, q, s) on seminormed spaces. Indian J. Pure Appl. Math., 34(4), 529-534.
[04] Bromwich, T. J. I'A. (1965). An introduction to the theory of infinite series. New York: Macmillan and Co. Ltd.
[05] Hardy, G. H. (1917). On the convergence of certain multiple series (pp.86-95). Proc. Camb. Phil. Soc.
[06] Krasnoselskii, M. A., & Rutickii, Y. B. (1961). Convex functions and orlicz spaces. Netherlands: Gorningen .
[07] Lindenstrauss, J., & Tzafriri, L. (1971). On orlicz sequence spaces. Israel J. Math., 10, 379-390.
[08] Maddox, I. J. (1986). Sequence spaces defined by a modulus. Math. Proc. Cambridge Philos. Soc, 100(1), 161-166.
[09] Moricz, F. (1991). Extentions of the spaces c and c0 from single to double sequences. Acta. Math. Hung., 57(1-2), 129-136.
[10] Moricz, F., & Rhoades, B. E. (1988). Almost convergence of double sequences and strong regularity of summability matrices. Math. Proc. Camb. Phil. Soc., 104, 283-294.
[11] Mursaleen, M. A. K., & Qamaruddin. (1999). Difference sequence spaces defined by Orlicz functions. Demonstratio Math., Vol. XXXII, 145-150.
[12] Nakano, H. (1953). Concave modular. J. Math. Soc. Japan, 5, 29-49.
[13] Orlicz,W. (1936). über Raume (LM). Bull. Int. Acad. Polon. Sci. A, 93-107.
[14]Parashar, S. D., & Choudhary, B. (1994). Sequence spaces defined by Orlicz functions. Indian J. Pure Appl. Math. , 25(4), 419-428.
[15] Rao, K. C., & Subramanian, N. (2004). The Orlicz space of entire sequences. Int. J. Math. Sci., 68, 3755-3764.
[16] Ruckle, W. H. (1973). FK spaces in which the sequence of coordinate vectors is bounded. Canad. J. Math., 25, 973-978.
[17] Tripathy, B. C. (2003). On statistically convergent double sequences. Tamkang J. Math., 34(3), 231-237.
[18] Tripathy, B. C., & Altin, Y. (2003). Generalized difference sequence spaces defferned by Orlicz function in a locally convex space. J. Anal. Appl., 1(3), 175-192.
[19] Turkmenoglu, A. (1999). Matrix transformation between some classes of double sequences. J. Inst. Math. Comp. Sci. Math. Ser., 12(1), 23-31.
[20] Kamthan, P. K., & Gupta, M. (1981). Sequence spaces and series, lecture notes, pure and applied
Mathematics. New York: 65 Marcel Dekker, In c.
[21] Gǒkhan, A., & Colak, A. (2004). The double sequence spaces cP2 (p) and cPB2 (p). Appl. Math. Comput.,157(2), 491-501.
[22] Gǒkhan, A., & Colak, A. (2005). Double sequence spaces l∞2 . ibid., 160(1), 147-153.
[23] Zeltser, M. (2001). Investigation of double sequence spaces by soft and hard analitical methods. Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ. of Tartu, Faculty of Mathematics and Computer Science, Tartu.
[24] Mursaleen, M., & Edely, O. H. H. (2003). Statistical convergence of double sequences. J. Math. Anal. Appl., 288(1), 223-231.
[25] Mursaleen, M. (2004). Almost strongly regular matrices and a core theorem for double sequences. J. Math. Anal. Appl., 293(2), 523-531.
[26] Mursaleen, M., & Edely, O. H. H. Almost convergence and a core theorem for double sequences. J. Math. Anal. Appl., 293(2), 532-540.
[27] Altay, B., & BaSar, F. (2005). Some new spaces of double sequences. J. Math. Anal. Appl., 309(1), 70-90.
[28] BaSar, F., & Y.Sever, Y. (2009). The space Lp of double sequences. Math. J. Okayama Univ, 51, 149-157.
[29] Subramanian, N., & Misra, U. K. (2010). The semi normed space de_ned by a double gai sequence of modulus function. Fasciculi Math., 46.
[30] H.Kizmaz, H. (1981). On certain sequence spaces. Cand. Math. Bull., 24(2), 169-176.
[31] Kuttner, B. (1946). Note on strong summabilit. J. London Math. Soc., 21, 118-122.
[32] Maddox, I. J. (1979). On strong almost convergence. Math. Proc. Cambridge Philos. Soc., 85(2), 345-350.
[33] Cannor, J. (1989). On strong matrix summability with respect to a modulus and statistical convergence. Canad. Math. Bull., 32(2), 194-198.
[34] Pringsheim, A. (1900). Zurtheorie derzweifach unendlichen zahlenfolgen. Math. Ann., 53, 289-
321.
[35] Hamilton, H. J. (1936). Transformations of multiple sequences. Duke Math. J., 2, 29-60.
[36] Hamilton, H .J. (1930). A Generalization of multiple sequences transformation. Duke Math. J., 4, 343-358.
[37] Hamilton, H. J. (1938). Change of Dimension in sequence transformatio , Duke Math. J., 4, 341-342.
[38] Hamilton, H. J. (1939). Preservation of partial Limits in Multiple sequence transformations. Duke Math. J.,4, 293-297.
[39] Robison, G. M. (1926). Divergent double sequences and series. Amer. Math. Soc. Trans., 28, 50-73.
[40] Silverman, L. L. (xxx). On the definition of the sum of a divergent series, un published thesis. University of Missouri studies, Mathematics series.
[41] Toeplitz, O. (1911). über allgenmeine linear mittel bridungen. Prace Matemalyczno Fizyczne (warsaw), 22.
[42] BaSar, F., & Atlay, B. (2003). On the space of sequences of p- bounded variation and related matrix mappings. Ukrainian Math. J., 55(1), 136-147.
[43] Altay, B., & BaSar, F. (2007). The fine spectrum and the matrix domain of the difference operator △ on the sequence space lp; (0 < p < 1), Commun. Math. Anal., 2(2), 1-11.
[44] Colak, M.Et R., & E.Malkowsky, E. (2004). Some topics of sequence spaces, lecture notes in mathematics (pp.1-63). Firat Univ. Elazig, Turkey, Firat Univ. Press, ISBN: 975-394-0386-6.
DOI: http://dx.doi.org/10.3968/5450
DOI (PDF): http://dx.doi.org/10.3968/g6169
Refbacks
- There are currently no refbacks.
Copyright (c)
Please send your manuscripts to sms@cscanada.net,or sms@cscanada.org for consideration. We look forward to receiving your work.
Articles published in Studies in Mathematical Sciences are licensed under Creative Commons Attribution 4.0 (CC-BY).
STUDIES IN MATHEMATICAL SCIENCES Editorial Office
Address: 1055 Rue Lucien-L'Allier, Unit #772, Montreal, QC H3G 3C4, Canada.
Telephone: 1-514-558 6138
Http://www.cscanada.net
Http://www.cscanada.org
E-mail:caooc@hotmail.com
Copyright © 2010 Canadian Research & Development Centre of Sciences and Cultures