Research on the Distribution of MersennePrimes Based on Zhou’s Conjecture

Wenlong DU, Bin SHEN, Yongqing ZHANG

Abstract


This paper presents an approximate expression of the number of Mersenne primes on the basis of Zhou’s conjecture, predicts the position of each Mersenne prime, and compares the number of Mersennes primes derived from this expression to the number of Mersennes primes derived from actual values and the four existing approximate expressions.


Keywords


Mersenne primes; Zhou’s conjecture; Distribution; Approximate expression

Full Text:

PDF

References


Zhang, S. B., & Chen, X. M. (2013). Mersenne primes and Zhou’s conjecture. Science & Technology Review, 31(3), 84.

Lehmer, D. H. (1935). On Lucas’test for primality of Mersenne’s numbers. J. of the London Math. Soc., 10, 162-165.

Zhang S. B. (2008). Review of research on Mersenne primes. Science & Technology Review, 26(18), 88-92.

Hurwitz, A. (1962). New Mersenne primes. Math.Comp,16, 249-51.

Gillies, D. B. (1964). Three new Mersenne primes and a statistical theory. Math Comp, 18, 93-97.

Wagstaff, S. S. (1983). Divisors of Mersenne numbers. Math Comp, 40, 385-397.

Zhou, H. Z. (1992). The distribution of Mersenne primes. Acta Scientiarum Naturalicm Universitatis Sunyatseni, 31(4), 121-122.




DOI: http://dx.doi.org/10.3968/3976

DOI (PDF): http://dx.doi.org/10.3968/g6166

Refbacks

  • There are currently no refbacks.


Copyright (c)




Share us to:   


Please send your manuscripts to sms@cscanada.net,or  sms@cscanada.org  for consideration. We look forward to receiving your work.

 

 Articles published in Studies in Mathematical Sciences are licensed under Creative Commons Attribution 4.0 (CC-BY).

 STUDIES IN MATHEMATICAL SCIENCES Editorial Office

Address: 1055 Rue Lucien-L'Allier, Unit #772, Montreal, QC H3G 3C4, Canada.

Telephone: 1-514-558 6138

Http://www.cscanada.net
Http://www.cscanada.org
E-mail:caooc@hotmail.com

Copyright © 2010 Canadian Research & Development Centre of Sciences and Cultures