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Abstract: In 1855, the mathematician Jie Bove proposed a primes
distribution conjecture of small regional called Jie Bove conjecture. This
article proposed and demonstrated the regional distribution theorem of
primes and proved Jie Bove conjecture.
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1. INTRODUCTION

In 1855, the mathematician Jie Bove proposed integer x* and (x+1)* between at
least two primes [1-3, 5, 6]. In 1905, Mai Lunte proved x < 9,000,000 the Jie Bove
conjecture is Established. Benpian proved:

(X +2x+1)-7z(x*)>1 (1)

where the 7 (x°) is not greater than x* number of prime numbers. If the (1) is
proved established, the Jie Bove conjecture is established.
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2. THEOREM INTERVAL DISTRIBUTION OF PRIMES

Set x >y, interval (x, y) is small, primes p, ignore decimals, we have [7-8]:

2(X)-7(0) =s(x)=s(»),  (x—>0) (2)
s(x>_s<y>=y£ng;; i ﬂ=§

Here (2) is known as theorem interval distribution of primes. For example, Let
y=9,x=16, by (2) calculation:

s(16)-s(9)= Y 2

y<p<x pln?\/
16-9
9<p<16 pln%ﬁ
7 7
"1l 13
9 9

=2+0.041881103

If ignore decimals 0.041881103, we get:
s(16)-s(9) =2
m(16)-m(9) =2

Let y = x*, and x into (x +1)? calculation:

X, n(x)-n(y), s(x)-s(y),

2, 2, 2+0.11,

4, 3, 3+0.12,

8, 4, 4-0.004,
16, 7, 7+0.023,
32, 9, 9+0.0238,
64, 14, 14+0.0037,
128, 24, 24-0.0025,
256, 53, 53+0.02,

By (2) if x approaching infinity, the decimals are infinitely small.
3. PROVE THEOREMS INTERVAL

Proof. Set x approaching infinity, interval (x, y) is small, by (2) we get:

Inl=In<
:m@+x_y)
y

62




Liu, D./ Studies in Mathematical Sciences, 7(2), 2013

_x-y -y G-y’

2 3

y 2y 3y
_X-y
y
and:
A=t
y
X— -1
= ln(l— yj
X
_ _ 2 _ 3
Xy b ? L p e
X 2x 3x
_Xx=)
X
We can get:
InAlni=2"2*"Y
y X
1n2 ﬂ, — (x_y)2
xy
and
Ini=2"Y
Jxv
By (2) we have:

y<p<x

Interval (x, y) is small, by (4) we can get:

p=

By (3) and (5) we get:
lIl,% :::E_:;gi, (_x - CO)

Into (2) we can get:

s()=s()= 2 1 =a(x)-7(y) , (x—>)

YEpsx

Then (2) is proved confirmed.
4 CONVERT THE THEOREMS INTERVAL

By (2) we get:

%su) —%s(y) < 7(x) — () < 25(x) ~ 25(»)

e S Y
swW-s= ¥

By (6) we prove the Jie Bove conjecture.
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5. MERTENS THEOREM
In 1874, mathematicians Mertens proved [4]:

zlzlnlnx+Al+o [LJ (7)
pex P Inx

Here (7) is known as Mertens theorem. Wherein A, is a constant.

Set x—oo by (7) we get:

Z“l:lnlnx+Al

p=x

Setx >y, we get:
ZL— zlzlnlnx+Al —Inlny—4

=P py
= lnln—x
Iny
:lnlny+1nx—lny
Iny
:ln(l+Mj, 1=
Iny y
Interval (x, y) is small, we have:
InA) InA In*A In*A InA
In| 1+—— T e S LELEEE =_
Iny) Iny 2In"y 3In’y Iny
We can get:
1_hi
YEpsx p lny
Set y = x*, and x into (x +1)°, we can get:
I Inxt
= _X: (x - OO) (8)

XZSpS(erl)z p ln X

Here (8) is known as theorem interval distribution of Mertens.
6. PROVE THE JIE BOVE CONJECTURE

By (2) we get:
2x+1

2
x2<p<(x+1)2 pln (x;l) )

s(x2+2x+1)—s(x2)=

By (9) we have:

2x+1 1
s(x24+2x+1)—s(x2) ="~ E —
21 le x2<p<(x+1)2 ! (10)

Set (10) into (8) we can get:
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s+ 25+ sy = 2 (Do) (11)
2Inx
Set (11) into (6) we get:
X ) ) 2x+1
<a(x*+2x+)—-7z(x*) < (12)
2Inx Inx

By (12), (2) is proved confirmed.
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