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1. INTRODUCTION

Throughout w, x and A denote the classes of all, gai and analytic scalar valued
single sequences, respectively.

We write w? for the set of all complex sequences(%,y,, ), where m,n €
N, the set of positive integers. Then, w? is a linear space under the
coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich (1965).
Later on, they were investigated by Hardy (1917), Moricz (1991), Moricz and
Rhoades (1988), Basarir and Solankan (1999), Tripathy (2003), Turkmenoglu
(1999), and many others.

Let us define the following sets of double sequences:

My (©):= {(Fmn) € W SUPynen |[Znn| ™ < 00},
Cp(t) = {(xmn) E wip —limpy poo Xy — | = 1 for some L€ C},
Cop(t) = {(Xmn) € Wi p = liMpp gso0 || = 1},
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Ly (t) = {(Xmn) € W?: Zpo i Zply [y [tmn < 00},
Chp(t) = Cp(t) N My, (t) and Copp (£) = Cop(t) N My (1),

Where t = (t,,,) is the sequence of strictly positive reals t,,, for allm,n € N and
p — lim,,, ,, = oo denote the limit in the Pringsheim’s sense. In the case t,,,, = 1
for all m,n € N; M, (t), Cp(t), Cop(£), Ly, (£), Cpp(t) and Copy (t) reduce to the
sets My, Cps Cops Lu> Cpps and Copp, respectively. Now, we may summarize the
knowledge given in some document related to the double sequence spaces. Gokhan
and Colak (2004, 2005) have proved that M, (t), and Cy,(t), Cpy (t) are complete
paranormed spaces of double sequences and gave the a-, -, y- duals of the spaces
M, (t) and Cpy (t). Quite recently, in her Ph.D. thesis, Zelter (2001) has essentially
studied both the theory of topological double sequence spacesw and the theory of
summability of double sequences. Mursaleen and Edely (2003) have recently
introduced the statistical convergence and Cauchy for double sequences and given
the relation between statistical convergent and strongly Cesdro summable double
sequences. Nextly, Mursaleen (2004) Mursaleen and Edely (2004) have defined the
almost strong regularity of matrices for double sequences and applied these
matrices to establish a core theorem and introduced the M - core for double
sequences and determined those four dimensional matrices transforming every
bounded double sequences x = (xji) into one whose core is a subset of the M —
core of x. More recently, Altay and Basar (2005) have defined the spaces
BS,BS(t); CSp, CSpp, CS, and BY of double sequences consisting of all double
series whose sequence of partial sums are in the spaces My, My, (t), Cp, Cpp, Cr
and L,,, respectively, and also examined some properties of those sequence spaces
and determined the a- duals of the spaces BS, BV, CSp, and the f(v)- duals of
the spaces CSp,;, and CS,. of double seties. Quite recently Basar and Sever (2009)
have introduced the Banach space L, of double sequences corresponding to the
well-known space £;0f single sequences and examined some properties of the
space L. Quite recently Subramanian and Misra (2010) have studied the space
x4 (p, g, u) of double sequences and gave some inclusion relations.

Spaces are strongly summable sequences were discussed by Kuttner
(1946), Maddox (1979), and others. The class of sequences which are
strongly Cesaro summable withrespect to a modulus was introduced by
Maddox (1986) as an extension of the definition of strongly Cesaro
summable sequences. Connor (1989) further extended this definition to a

definition of strong A-summability with respect to a modulus where
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A= (ank) is a nonnegative regular matrix and established some
connections between strong A-summability, strong A-summability with
respect to a modulus, and A- statistical convergence. In (1900) the notion of
convergence of double sequences was presented by A. Pringsheim. Also, in
[35]-[38], and [39] the four dimensional matrix transformation (Ax)y, =
X ol apgXm, Was studied extensively by Robison and Hamilton.

Let &,,,, denotes the set of all subsets of N, those do not contain more
than (mn) elements. Further (&,,,,) will denote a non-decreasing sequence
of positive real numbers such that mn®,,,,1 41 < (M + 1,n + 1)@y, for
allm,n € N.

Now, if u = (u,,,) IS any sequence such that w,,,, # 0 for each m,n and
w? (X) denote the space of all sequences with elements in X, where (X, q)
denotes a semi normed space, seminormed by g, and n, u is any real number
such that n,u = 0. This will be accomplished by presenting the following
sequence space:

AT (A7, A ) =

(€W 50b, e 5 e B, (7 F (@ (s (B ) [H/747)Pr) < ol
where f is a modulus function. Other implications, general properties and
variations will also be presented.

We need the following inequality in the sequel of the paper. Fora, b >0
and 0<p< 1; we have

(a+ b)P < aP + bP. (1.1)

The double series Y, ,—1Xmy is called convergent if and only if the
double sequence (sp,) is convergent, where sy, = Y77,
N)(see [1]).

A sequence x = (x;,,) IS said to be double analytic if

x;j(mn €

SUPmn |%mn| /™™ < 0. The vector space of all double analytic sequences
will be denoted by A%. A sequence x = (x,,,,) is called double gai sequence
if ((m+n)!|x,)Y™™ > 0asm,n — . The double gai sequences
will be denoted byy?. Let® = {all finite sequences}.

Consider a double sequence x = (x;;). The (m, n)™" section xI"™"! of the
sequence is defined by x™"l = 377 x;/5;; for all m,n € N; where J;;
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denotes the double sequence whose only non-zero term is aa%,-)v in the

(i, )t place for each i,j € N.
An FK-space (or a metric space) X is said to have AK property if (3,,,)

is a Schauder basis for X. Or equivalently x!™™ — x.

An FDK-space is a double sequence space endowed with a complete
metrizable; locally convex topology under which the coordinate mappings
x = (xx) = (Xpmn)(m,n € N)) are also continuous.

Orlicz (1936) used the idea of Orlicz function to construct the space (LM).
Lindenstrauss and Tzafriri (1971) investigated Orlicz sequence spaces in
more detail, and they proved that every Orlicz sequence space #,, contains a
subspace isomorphic to £p(1 < p < o). Subsequently, different classes of
sequence spaces were defined by Parashar and Choudhary (1994),
Mursaleen et al. (1999), Bektas and Altin (2003), Tripathy et al. (2003), Rao
and Subramanian (2004), and many others. The Orlicz sequence spaces are
the special cases of Orlicz spaces studied in [6].

Recalling [13] and [6] an Orlicz function is a function M : [0, o) —[0, co0)
which is continuous, non-decreasing, and convex with M (0) =0, M (x)> 0,
forx > 0and M (x) - o as x — oo. If convexity of Orlicz function M is
replaced by subadditivity of M, then this function is called modulus function,
defined by Nakano (1973) and further discussed by Ruckle (1986) and
Maddox (1986), and many others.

An Orlicz function M is said to satisfy the A, — condition for all values of
u if there exists a constant K > 0 such that M (2u) < KM (u)(u = 0). The
A, — condition is equivalent to M (Yu)K¢M (u) for all values of u and for
£ > 1.

Lindenstrauss and Tzafriri (1971) used the idea of Orlicz function to
construct Orlicz sequence space

ty = {x Ew: Y M (lx—"|) < oo, forsomep > O}.
The space #,, with the norm

Il = inf {p > 0: 571 (%) < 1,
becomes a Banach space which is called an Orlicz sequence space. For
M(t)=tP(1 < p < ), the spaces #,, coincide with the classical sequence
space ¥p.
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If X is a sequence space, we give the following definitions:

(i) X’ = the continuous dual of X;

(i) X*={a = (@mn): o =1 |GmnXmn| < oo, for each x € X};

(i) XP{a = (amn): Ygn n=1AmnXmn is convegent, for each x € X};

(iv) X¥ = {a = (amn): SUpmn = 1|Z%’,¢l’:1amnxmn| < o,foreachx €X};

(v) let X bean F K —space D @;then X/ = {f(Sn):f € X' };

(vi) X% = {a = (amn): supmn|amnxmn|1/m+" < oo, foreachx € X};

X* XB, XV are called a — (or Kdothe — Toeplitz) dual of X, 8- (or
generalized - Koothe — Toeplitz) dual of X, y- dual of X, § - dual of X
respectively. X”is defined by Gupta and Kamptan (1981). It is clear that
x® c Xf and X* c X¥,but X# c X7 does not hold, since the sequence of
partial sums of a double convergent series need not to be bounded.

The notion of difference sequence spaces (for single sequences) was
introduced by Kizmaz (1981) as follows

Z(A) = {x = (xx) Ew:(Ay) € Z},
for Z=c, coand £, where A, = x;-x;4 forall k € N.

Here c, co and ¢, denote the classes of convergent, null and bounded
sclar valued single sequences respectively. The difference space bv, of the
classical space #p is introduced and studied in the case 1 < p < oo, BaSar
and Altay in [42] and in the case 0 < p < 1, by BaSar and Altay in [43].
The spaces ¢ (4), ¢o (4), £ (A) and by, are Banach spaces normed by

llll = |x1] + supgzq|Ax, | and ||xllpy, = Tyl P)P, (1< p < ).

Later on the notion was further investigated by many others. We now
introduce the following difference double sequence spaces defined by

Z(A) = {x = (xpn) € Ww2: (Axppyy) € Z3,
where Z = A2, X* and Axpmy = (Xmn — Xmns1) — Fmain = Xmains1) =

Xmn — Xmn+1 — Xm+in T Xmt1n+1 forallmne N

2. DEFINITIONS AND PRELIMINATIES

AZ’ (A7, A, (;[))Z denote the Pringscheims sense of double analytic sequence

space of modulus.
2.1 Definition. A modulus function was introduced by Nakano (1953).

We recall that a modulus f is a function from [0, co0) —[0, o), such that
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(1) f(x)=0ifand only if x =0,
@ fx+y) <f(x)+ f(y) forallx >0,y >0,
(3) fisincreasing,
(4) fis continuous from the right at 0. Since |f(x) — f(V)| < f(lx — y]), it
follows from here that f is continuous on [0, o).
2.2. Definition. Let A = (ay'}') denote a four dimensional summability method

that maps the complex double sequences x into the double sequence Ax where the k,
¢ — th term to Ax is as follows:

(AX)ke = Lm=12n=1k¢ Xmn
such transformation is said to be nonnegative if agy" is nonnegative.

The notion of regularity for two dimensional matrix transformations was
presented by Silverman (2011) and Toeplitz (1911). Following Silverman
and Toeplitz, Robison and Hamilton presented the following four
dimensional analog of regularity for double sequences in which they both
added an adiditional assumption of boundedness. This assumption was
made because a double sequence which is P- convergent is not necessarily
bounded.

2.3 Definition. For a subspace i of a linear space is said to be sequence
algebraif x,y €, impliesthat x - y = (X;pnVmn) € V.

2.4 Definition. A sequence E is said to be solid (Or normal) if
(AmnXmn) € E, wherener (x,,,,) € E) for all sequences of scalars (A,,,, =
k) with A, < 1.

2.5 Definition. A double sequence space E is said to be monotone if it
contains the canonical pre-images of all its step spaces.

2.6 Remark. From the above, it is clear that a sequence space E is solid
implies that E is monotone.

2.7 Definition. Let X be a real or complex linear space, g be a function
from X to the set R of real numbers. Then, the pair (X, g) is called a
paranormed space and g is a paranorm for X, if the following axioms are
satisfied for all elements x, y € E and for all scalars a

(PN.1)g(x)=0ifx=6.

(PN.2) g (-x) =g ().

(PN3)g(x+y)<g (x) + g (¥).

(PN.4) If (a) is a sequence of scalars with a, — aas n - oo and X, X
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€ X for all n € N with x, — x as n — oo then a, X, — ax as n — oo, in the
sense that g(axn- oX) — 0 asn — oo,

3. MAIN RESULTS

3.1 Theorem. Alz,g (A7, A, ¢)Z is linear space over the complex field C.
Proof: It is easy. Therefore omit the proof.
3.2 Theorem. A]%g (A7™, A, @), is a paranormed space with
9 () = SUD 21 €0y 5 e e (9) T (g (1Ars gm0 /mem)™™) - (3.1)
ifand only if h = in fp,; > 0, where M = max (1, H) and H = suppmn.
(ii)Ach (AT A, qﬁ)z is a complete paranormed linear metric space if the condition
p in (3.1) is satisfied.
Proof(i): suffciency: Let h > 0. It is trivial that g(6) = 0 and g(—x) =

9(x).

The inequality g(x +y) < g(x) + g(y) follows from the inequality
(3.1), since p, /M < 1 for all positive integers r, s. We also may write
g(Ax) < max(|A], |A|MM) g(x), since |A|Pmn < max(|A|", |A|M) for all
positive integers r, s and for any A € C, the set of complex numbers. Using
this inequality, it can be proved that Ax —8, when x is fixed and 1 —0, or 1
—0 and x —6, or 1 is fixed and x —6.

Necessity: Afc;’ (A7, A, ¢)Z Let be a paranormed space with the

paranorm.

1 - Prs/M
g (x) = SUPm,n=1,0e€0mn 0 ZTEO‘ZSEO‘(TS) U#f(q (lArs(ATnx)ll/m-'_n) § )
mn

and suppose that h = 0. Since |A|Prs/M < |A|"M = 1 for all positive integers T, s
and A € C such that 0 < || <1, we have

g (X) = SUPy n>1,060mn 77— @ YreoYses () f (q (IADPr/M) = 1.

Hence it follows that
g (Ax) = SUPmn=1,0e0mn 7 @ Yreotisea(1S)” "Mf(q (l/ll)pTS/M) =1,

for x=(a) € Ajzc: (AT, A, qb)z as 4 —0. But this contradicts the assumption
Ajzc;’ (AT A, ¢)Z is a paranormed space with g (x).

(ii) The proof is clear.
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3.3 Corollary. Ajzc;’ (AT, A, gb)Z is a complete paranormed space with the
natural paranorm if and only if Aﬁg (AT™, A, ) =T (AT, A, )y
3.4 Theorem. Ajzc; (AT A, ¢H] A]ch (AT A, oD if and only if

SUPmn=1 z:: < .

1
Proof: Letx € A]%;’ (AT, A, ¢1)Z and T=sup,,ns1 zg: Then
1

_ Prs
SUPmn=1,0 €@y ¢2 Yreodises(TS) MM f(q (lArs(Ame)ll/mHl) )<
mn

1

mn 1 — Drs
SUPmnz1 (Zzzsupm,nzl,a €Dmn @1 Yreatses(TS)TMf(q (lArs(Ame)ll/mHl) )=
1 _ Drs
T x SUPm,n=1,06 €dppn ¢Tmn ZrEaZsEa(rS) ﬂllf(q (lArs(Ame)ll/mHl) )
Therefore x € A?q (AT A, (Z))Z.
p
Conversely, let A]%Z (AT A, 1)) © A]%g (amm, A, )] and
x € AZ? (AT, A, 1)1 . We have
1 -nu mn 1/m+n\Prs
Supm,nzl,a EDmn ¢T ZreaZsEa(rS) f(q (lArs(Au x)l ) ) < oo,
mn

Suppose that sup,,ns1 zm” < oo. Then there exists a sequence of positive

¢ nj
natural numbers (m;n;) such that lim; ; — oo = oo, Hence we can write

mn]

1 — Pr.
Supm,nZI,aE(Z)mn ¢T ZrEaZsEa(rS) ﬂﬂf(q (lArs(ALnnx)ll/m-Fn) S) =
mn

1 _ DPrs
Supm,nzl,a €EDmn ¢Tmn ZrEaZsEa(rS) TI#f(q (lArs(Ame)ll/m-‘-n) ) =

Therefore x ¢ Ajzcg (A7 A, ¢2))  which is a contradiction. Hence
z;’z: < 00,
3.5 Theorem. Let f be an modulus function which satisfies the A,—
. 2 2 . .
condition. Then A : (O™ A, @)= Ay, (A, A, ¢?)]) if and only if

SUPmn=1 (imn < coand Supmns1 (:;mn

mn mn

Supngl

<

3.6 Theorem. Let f and f1 be modulus functions which satisfies the A, —
condition. Then A]%Z (AT, A, ), © ALY fp QT A, o).
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Proof: Let x € Ajzc: (A7, A, gb)Z and e > 0 be given and choose § with

0<d <1lsuchthatf(t)<efor0 <t < §. Therefore we have writ

1
—— YreoYses ) M F(1(q (1Ars Q) |/ m+)P)) =

Supm,nzl,cr €mn Pin

1
SUP a1 comn 75— 201 (A (1Ars@EmD™)7)) +

SUPm 210 €0 5 222 (TS) HF(1(G (14750 V™)),

mn

Where the summation Y3 is over f;(q (I4,s(AR™x)|Y/™ ™)) < § and the
summation Y3, is over f; (q (|ATS(A’£”x)|1/m+”)) > §. Since f is continuous,

we have
SUPpm 21,0 €Bpnn i 51 ()M F (F1(q (1Ars A2 [V/mm)P7)) <
max{1, f (1)"}supmnz10 egpmn i 231 () M f1(q (1A4ps (AT |/ 7)) <
max{1, f(1)"}sup, 10 €0 ﬁ YreoYseo (rS) M f (q (| Ar( ATnx)ll/m+n)prs).

For
h (q (|Ar5(AL"”x)|1/m+”)) > &, we use the fact that

£ (q (lArS(ALnnx)ll/an)) < fi (q (lATS(ALnnx)ll/mﬂl)) 51
<1+ £ (q (JArs @) /mm) ) 571

Since f satisfies the A,— condition, then there exists L > 1 such that
£ (£ (a (@m0l ™)) £+ i (g (1Ars @m0 /mm)) 571 <
L1+ 2 £ (4 (1Ans @m0 [Y/™) ) 571) +
SLF2)f; (q (1A @) /mem)) 671)=
1£2) 6711 (@ (1Ars (A5 |/ m41)).
WPt com 5 EreoSsco (r5) M (q (1Ars B0/ 1)™) <
1

max{l, f(l)H} SUPmnz1,0 €E0mn ¢— ZreaZsea(rs)_nufl(q (lArs(ALnnx)ll/m+n)prs)
mn

+ max{1,Lf (2) S_I)H} SUPm,nz1,0 €dmn ¢_ Yreotses(TS) ™ f1(q (lArs(Azmx)ll/an)pTS)_

Therefore x € Ajzcg (AT, A, ¢))Z
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3.7 Theorem. A;Z (A7™, A, @)1 is not separable.

Proof: f(q (|Ars(AZ‘”x)|1/m+n)p” - 0asm,n— o, SO it may so
happen that first row or column may not be convergent, even may not be
bounded. Let S be the set that has double sequences such that the first row is
built up of sequences of zeros and ones. Then S will be uncountable.
Consider open balls of radius 3™ units. Then these open balls will not cover

Ajzc: (amm, A, ¢)Z. Hence is not separable.

3.8 Remark. Let f = (fun) be a modulus function g, and g, be two
seminorms on X, we have

(D) AT (AT, A, @), N AL (AT A, ) € AL (AT, A, ¢,
(ii) If gy is stronger than g, then AJZCZI (AT, A, )} N AJZCZZ (amm A, )7,
(iii) If gy is equivalent to g then A}%gl (AT A, )] = A)%:Z (AT A, o).
3.9 Proposition. For every
p= e {120 @m0} = (020 @A) =
(020 amm A @)1} = 27 g, A, )13, where 127 (A7, A, )} = Nyex-—qa)

{x = X = TreoDseo () MF(q (1Ars (ML) V™17 < ool

. B
Proof(1): First we show that {'I,ch @A)} e {A}%; (@A ¢}
B
Let € {nﬁf (A", A,¢)) } andy € {Aj%z‘j (@A)} . Then we
can find a positive integer N such that

(Iymal™m) <
1 _ Prs
max (1; SUPmn=>1 m ZTEJZSEJ(TS) ?Hlf(q (lArs(Azmx)ll/m*.n) ) <o) <N,
forall m, n.
Hence we may write

|Zm,nxmny"m| < Zm,nlxmnymnl < Zmn(f(lxmnymnl)) < Zm,n(f(lAumn xle+n)).
Since x € {ng’ (AZ‘",A,¢)Z}. The series on the right side of the above

inequality is convergent, whence x € {7712‘5 (AT A, ¢)Z} . Hence
B
{mp amm,a, 900} = {030 A 901}
B
Now we show that{A]Zc: (A7, A, ¢)Z} c {77,%,? (A7, A, d)p) }
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For this, let «x E{A)ch (AT, A, ¢>)Z}[g and suppose that x &
{A]Zc: (AT, A, ¢)Z}. Then there exists a positive integer N > 1 such that
T (f (AT x|[N™™)) = oo,

If we define y,, = N™T"SgnA?™ m, n =1, 2..., then
y € {n7 (amm, A, ) }.

But, since |Somnxmnymn| = Zmn (f (XmnYmn)) = e (FUAE™ x[NTH)) = o0,

B . . .
we getx ¢ {A)ch (AT, A, ¢)Z} , Which contradicts to the assumptionx €
B
{A)Zc; (amn A, ¢>)Z} . Therefore x € {ng’ (A7™, A, b)), }

Therefore {A77 (A, A, ), }ﬁ = {n}? (A, 901 }.
(ii) and (iii) can be shown in a similar way of (i). Therefore we omit it.

4, RESULT

4.1. Proposition. The space A]%g (A7, A, ¢);, is not monotone and such
are not solid.

Proof: The space Ajzc;’ amr, A,¢)Z is not monotone follows from following
examples. Since the space Ajzc: (A7 A, ¢)Z is not monotone, is not solid is clear

from the remark 2.6.
Example: Let X = C and consider the sequence (Xmn) defined by if

1,1,..1
[1, 1,.. 1\

(Xmn) = ' forallm,n € N.

1,1,..1
Consider the sequence (ymn) in the preimage space defined as

y :{iz,ifmzn,ie N
™o, otherwise.
Then (Xmn) € A]%;’ (AT A, ¢ but (Ymn) eA]%Z (AT, A, )] are not

monotone.
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4.2 Proposition. The space Ajzc: (A A, ¢>)Z are not convergence free

in general.
Proof: The proof follows from the following example:

Example: Consider the sequences (Xmn), (Ymn) EAJZ,;Z (A7, A, )]

Defined by (AT"x) = (=1)Y/™*" and (AT™y)=(2=2)/™m+" Hence

m+n m+n

supm,nzli(ﬁ)l/mm < 0. which implies SUP.y, ns1 |Xmn |/ ™" < 0. Also

SUP a1, (E)V/MHM = 0. Hence supyyus1, [Ymnl /™ ™=0. Therefore

the space Ajzc; (amm, A, ¢)Z are not convergence free.

4.3. Proposition. Ajzc;’ (Amm A, ¢)Z is not sequence algebra.

Proof: This result is clear the following example:
Example: Let (Xun) = (G2)Y™7 and (Y ) = (=2)Y™* " for all

m+n m+n

2
m,n € N.Thenwe have x,y € AfZ (A7", A, ¢), but

x -y & A A D)
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