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Abstract: Areas of prime number theorem is proposed in this paper, and
the area of prime number theorem. The basic theorem of prime number
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1. INTRODUCTION

In 1859, a German mathematician Riemann proposed: Riemann zeta function [1–3]:

ζ(s) =

∞∑
n=1

n−s, Re(s) > 1, (1)

From Equation (1), we can get:

]ζ(s) = 2Γ(1− s)(2π)s−1 sin(πs/2)ζ(1− s), (2)

Surrounded by (2) of zero point is referred to as: zero. Riemann hypothesis:
Riemann zeta function all nontrivial zero point is in the critical line.
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2. RIEMANN PRIME DISTRIBUTION FORMULA

Set π(x) is not greater than x number of prime Numbers, then:

π(x) =
∑
n

µ(n)

n
J(x1/n), (3)

J(x) = Li(x)−
∑

Im ρ>0

[Li(xρ) + Li(x)1−ρ] +

∫ ∞
x

dt

t(t2 − 1) ln t
− ln 2, (4)

Here Equation (3) is Riemann prime distribution formula. The main conclusions

of the Riemann was obtained in 1859. The function µ(x) is called: M’́obius function,
which is defined as follows [5]:

µ(n) =

 1, n = 1,
(−1)k, n = p1, p2, p3, · · · · · · pk,
0, The rest.

The pk is not the same Prime number. Here Equation (4) refers to: the step
function. Li(xρ) + Li(x1−ρ) involves the Riemann content distribution of zero.
Obviously, Riemann prime distribution formula of calculation is very complicated.
In 1901, Swedish mathematician von Koch proved that if Riemann content was
established, then [5,6]:

π(x) = Li(x) +O(x1/2 lnx), (5)

Li(x) =

∫ x

2

1

lnu
du

Here Equation (5) is a prime number theorem.
If Riemann hypothesis was established, we can also get the prime number theo-

rem:

π(x) = Li(x) +O(x1/2+ε),

In turn: if the prime number theorem Equation (5) was established, then the
Riemann hypothesis was established. In fact for the x limited was set up. So as
long as can prove sufficiently large x is set up, then Equation (5) is set up.

3. THEOREM OF PRIME NUMBER DISTRIBUTION SE-
RIES

Set a large number x, parameter lambda λ > 1, prime number p, get:

π(x)→ s(x), (6)

s(x) =

x/2−1∑
n=1

2

lnλ

∑
2n6p62n+2

1

p
, λ =

n+ 1

n
,

Here Equation (6) is referred to: Theorem of prime number distribution series.
x/2 is an integer. For example, set x = 10, the following can easily obtained by
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Equation (6):

s(10) =

4∑
n=1

2

ln n+1
n

∑
2n≤p≤2n+2

1

p

=
2

ln 2

1

2
+

2

ln 2

1

3
+

2

ln(3/2)

1

5
+

1

ln(4/3)

1

7
,

so s(10) = 4 + 0.3841729, actual π(10) = 4.

Proof. Set 2n < p < 2n+ 2, if there is a prime number in the interval (2n, 2n+ 2),
it must be 2n+ 1, which means

p = 2n+ 1, p > 2,

and then

λ =
n+ 1

n
=

2n+ 1 + 1

2n+ 1− 1
=
p+ 1

p− 1
,

By Equation (6), we can get:

s(x) =

x/2−1∑
n=1

2

lnλ

∑
2n≤p≤2n+2

1

p

=
1

ln 2
+

x/2−1∑
n=1

∑
2n<p<2n+2

2

p lnλ

=
1

ln 2
+

∑
2<p<2(x/2−1)+2

2

p lnλ

=
1

ln 2
+
∑

2<p<x

2

p lnλ
,

Therefore, the following equation is obtained:

s(x) =
1

ln 2
+
∑

2<p<x

2

p lnλ
, λ =

p+ 1

p− 1
. (7)

Set x > y, form Equation (7),

s(x)− s(y) =
∑

y<p<x

2

p lnλ
, λ =

p+ 1

p− 1
,

If x is a large number, and y = 2[x1/2/2], then:

lnλ = ln

(
1 +

2

p− 1

)
=

2

p
,

s(x)− s(y) =
∑

y<p<x

1 = π(x)− π(y),

π(x) = s(x)− s(y) + π(y),

Obviously,
π(x)→ s(x).

The theorem (6) was proved.
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For example,
x π(x) s(x)
10 4 4 + 0.3841729
102 25 25 + 0.37
103 168 168 + 0.37
104 1229 1229 + 0.37
105 9592 9592 + 0.37
106 78498 78498 + 0.37
107 664579 664579 + 0.37
108 5761455 5761455 + 0.37

4. INTERVAL PRIME NUMBER THEOREM

Set x > y, ignore the reminder term and table as an integer, we can get the following
from Equation (6):

π(x)− π(y) = s(x)− s(y),

s(x)− s(y) =

x/2−1∑
n=y/2

2

lnλ

∑
2n≤p≤2n+2

1

p
, λ =

n+ 1

n
,

(8)

Here Equation (8) is: interval prime number theorem. Where x/2 and y/2 are
integers.

Proof. The same as that prove Theorem (6).

By Equation (8), we can get: π(x) = s(x)− s(y) + π(y).
For example, set y = 2[x1/2/2], by Equation (8), the following can be obtained:
x π(x) s(x)− s(y) + π(y)
10 4 4 + 0.3841729
102 25 25− 0.0096482
103 168 168− 0.0023702
104 1229 1229− 0.0006029
105 9592 9592− 0.0001529
106 78498 78498− 0.000042
107 664579 664579− 0.0000118
108 5761455 5761455 + 0.000000142

Ignore the remainder term and table as an integer, π(x) = s(x)− s(y) + π(y).

5. TRANSFORM THEOREM OF PRIME NUMBER DIS-
TRIBUTION

From Equation (6), we have
2π(y) > s(y), (9)

Substitute Equation (9) into Equation (8), we have

π(x) = s(x)− s(y) + π(y) > s(x)− 2π(y) + π(y),

and
π(x) > s(x)− 2π(y), (10)
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From Equation (8), we have

π(x) = s(x)− s(y) + π(y) < s(x) + 2π(y), (11)

Combining Equation (10) and Equation (11):

s(x)− 2π(y) < π(x) < s(x) + 2π(x), (12)

We can prove a new prime number theorem by Equation (12).
In 1874, mathematician Mertens proved [4]:∑

p6x

1

p
= ln lnx+A1 +O

(
1

lnx

)
, (13)

Here Equation (13) is called: Mertens theory. Where A1 is a constant.
Set lnx→∞, by Equation (13) [7,8]:∑

p≤x

1

p
= ln lnx+A1,

∑
2n≤p≤2n+2

1

p
=

x/2−1∑
n=y/2

ln
ln(2n+ 2)

ln(2n)
=

x/2−1∑
n=y/2

ln

(
1 +

lnλ

ln(2n)

)
,

and

x/2−1∑
n=y/2

ln

(
1 +

lnλ

ln(2n)

)
=

x/2−1∑
n=y/2

lnλ

ln(2n)
,

∑
2n6p62n+2

1

p
=

x/2−1∑
n=y/2

lnλ

ln(2n)
, λ =

n+ 1

n
,

(14)

Here Equation (14) is called interval prime number theorem.

6. PROOF A PRIME NUMBER THEOREM

Substitute Equation (14) into Equation (8), we have

s(x)− s(y) =

x/2−1∑
n=y/2

2

ln(2n)
=

x/2−1∑
n=1

2

ln(2n)
−
y/2−1∑
n=1

2

ln(2n)
,

s(x) =

x/2−1∑
n=1

2

ln(2n)
=

x∑
n=2

1

ln(n)
,

(15)

If x is a large number and y = x1/2, then the following can be obtained from
Equation (15) and Equation (12):

s(x)− 2π(x1/2) < π(x) < s(x) + 2π(x1/2), (x→∞),

s(x) =

x∑
n=2

1

ln(n)
,

(16)

Here Equation (16) is a new prime number theorem.
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7. PROVE RIEMANN HYPOTHESIS

In integral sense, Equation (5) and Equation (16) are the same, therefore

Li(x) =
∫ x
2

1
lnudu =

x∑
n=2

1
ln(n) ,

Li(x) = s(x),

For example:
x π(x) Li(x) s(x)
10 4 6 6
102 25 30 30
103 168 177 177
104 1229 1246 1246
105 9592 9530 9530
106 78498 78627 78627
107 664579 664918 664918
108 5761455 5762209 5762209

Substitute Li(x) = s(x) into Equation (16), we have

Li(x)− 2π(x1/2) < π(x) < Li(x) + 2π(x1/2), (x→∞). (17)

Here Equation (17) Shows that Riemann hypothesis is established when x tends
to infinity.

By Mertens theore (13), if of the small x, can is 2π(x1/2), then all the x, can is
2π(x1/2).

For example: set π(x) = Li(x)− 2π(x1/2)c(x), then:
x π(x) Li(x) c(x)
10 4 6 0.6
102 25 30 0.62
103 168 177 0.41
104 1229 1246 0.34
105 9592 9530 0.29
106 78498 78627 0.38
107 664579 664918 0.38
108 5761455 5762209 0.31

Clearly all the x, can is π(x) > Li(x)− 2π(x1/2).
And from Equation (17), table as an integer, we have:

Li(x)− 2π(x1/2) ≤ π(x) ≤ Li(x) + 2π(x1/2),

π(x) = Li(x) +O(x1/2+ε), x ≥ 2.

So the theorem (5) was established. And Riemann hypothesis was established.

8. DISCUSSION

This is the focus of the prove Theorem of prime number distribution series. So
Proving a and Riemann hypothesi The prime number theorem of equivalence. It is
proved that: Riemann zeta function all nontrivial zero point is in the critical line.
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In addition, Theorem of prime number distribution series can There are different
forms.

Set Positive number s ≥ 2, has:

π(x) = s(x),

s(x) =

x/2−1∑
n=1

x+ y

2

∑
y6p6x

1

p
,

(18)

From (18), we have:

π(x) = Li(x) +O(x1/s), x ≥ c,
y = x1/s,

where c is an arbitrary large number.
This problem is beyond over This subject, should not be discussed in detail.
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