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Abstract: Foreign exchange option, as a financial derivative, plays an im-
portant role in the financial market. It is of great theoretical and practical
significance to study the foreign exchange options, especially its pricing mod-
el. In order to more accurately portray the authenticity of foreign exchange
market, this paper applies fractional Brown motion in the fractal market
hypothesis and combines with jump diffusion process so as to establish the
pricing model of foreign exchange option. Moreover, this paper put forward
the pricing formulas of European foreign exchange call and put option, as
well as their relationships by using the method of insurance actuary pricing.
No matter whether the financial market has arbitrage or not, no matter it is
complete or not, this conclusion is valid.
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1. INTRODUCTION

Since Philadelphia Stock Exchange of the United States introduced the foreign
exchange option transaction in 1982, foreign exchange options have gotten rapid
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development. It is a mature and widely-used foreign exchange derivatives instru-
ment, which can effectively avoid and control foreign exchange risk. It is of great
theoretical and practical significance to study the foreign exchange options, espe-
cially its pricing model. There is no doubt that BSGK model, which was obtained in
1983 when Garman and Kohlhagen extended Black-Scholes option pricing model to
the field of foreign exchange options, is the most influential foreign exchange option
pricing model. BSGK model is built on the assumptions of normal distribution in
an efficient market. This assumption believes that the fluctuations in the exchange
rate follow the Brownian motion and its rate of return takes on a normal distribu-
tion. However, the long-term market validation and a large number of empirical
studies have found that the empirical distribution of most of the changes of market
variable (especially changes in exchange rates) has a thick tail, and shows a positive
high Kurtosis, and has a long-term correlation between the exchange rate at the d-
ifferent times. It shows that the foreign exchange market is not an efficient market.
BSGK model itself has some weaknesses, and the subsequent studies are mostly
based on the amendment, improvement and expansion of the random process which
the price of the underlying asset is subject to.

In 1989, Peters proposed a fractal market hypothesis, and proved that there was
fractal structure with non-periodic cycle in different capital market. Fractal mar-
ket hypothesis does not depend on such assumptions of exchange rate fluctuations
as the independent and normal distribution assumptions. What’s more, fractional
Brownian motion can better explain many phenomena in foreign exchange market,
such as the “thick tail” and long-term correlation, which the efficient market hy-
pothesis can not account for. Therefore, creating a foreign exchange option pricing
model by fractional Brownian motion in the fractal market hypothesis, we can more
accurately portray the authenticity of the market. In 2000, Hu [1] introduced Wick
integral in fractional Brownian motion, and in 2003 [2], developed Wick integral in
fractional Brownian motion when Hurst exponent H > 0.5 through fractional white
noise. Bender [3] and Elliott [4] promote Wick integral of fractional Brownian mo-
tion to the case of Hurst exponent H ∈ (0, 1), and set up fractional Black-Scholes
model of European contingent claim. What is inadequate is that fractional Brow-
nian motion describes only the continuous change of the price of the underlying
asset, that is, the normal changes of asset prices under normal market conditions,
but it cannot interpret the abnormal changes of assets prices caused by the unusu-
al circumstances in the market (non-economic factors), namely the discontinuous
and wide “jump”. In order to make up for this deficiency, this paper, adopting
the fractional Brownian motion in the fractal market hypothesis, combining with
the jump-diffusion process [5,6] and using the method of insurance actuary pricing,
discusses the pricing issue of European foreign exchange options.

2. THE CONSTRUCTION OF MATHEMATICAL EVALU-
ATION MODEL

2.1. Fractional Brownian Motion

The fractional jump-diffusion model made in this article is based on fractional Brow-
nian motion. Fractional Brownian motion was firstly put forward by Mandelbrot.
Compared with the standard Brownian motion, it is a notable feature that the
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time-related function is not zero, namely “long-range correlation”. Next we will
introduce the definition and some basic properties of fractional Brownian motion.

Definition 2.1 Stochastic process BH(t) is called fractional Brown motion, if it

is continuous and meet P (BH(0) = 0) = 1, BH(t)−BH(s) ∼ N(0, |t− s|2H), where
H is Hurst exponent and H ∈ (0, 1).

Fractional Brownian motion is a continuous zero-mean Gaussian process, and
its covariance function meet E(BH(t)BH(s)) = 1

2 (|t|2H + |s|2H − |t− s|2H).

If 0 < H < 0.5, the correlation coefficient is negative, BH(t) is anti-persistent; if
0.5 < H < 1, the correlation coefficient is positive, BH(t) is persistent; if H = 0.5,
the correlation coefficient is zero, BH(t) is Brownian motion. Fractional Brown
motion has self-similarity, long-term dependence and other characteristics, which
makes it a more appropriate tool for mathematical finance research.

2.2. Fractional Jump-Diffusion Model of Foreign Exchange Option Pric-
ing

Given the financial market in continuous time, taking 0 as now and T as the due
date; Given a complete probability space (Ω, F, P ), assume that foreign Bond price
P f (t) and domestic Bond price P d(t) respectively meet

dP f (t) = P f (t)rf (t)dt, P f (T ) = 1; (1)

dP d(t) = P d(t)rd(t)dt, P d(T ) = 1. (2)

where rd(t), rf (t) represent the domestic currency risk-free interest rate and foreign

currency risk-free interest rate. Easy to know, P f (t) = exp{−
∫ T
t
rf (t)dt}, P d(t) =

exp{−
∫ T
t
rd(t)dt}.

Assume that the price process of foreign exchange rate S(t) meets stochastic
differential equation as follows:

dS(t) = S(t)
[
µ(t)dt+ σ(t)dBH(t) + (eJ(t) − 1)dQt

]
(3)

where BH(t) is fractional Brownian motion, Hurst exponent H ∈ (0, 1); µ(t), σ(t)
are continuous functions of the time t; Qt represents the random jump number
of foreign exchange price in the period of time [0, t], assuming that it obeys the
Poisson process and its parameter is λ; suppose the random variable J(t) subject
to the special normal distribution N(−σ2

J/2, σ
2
J), eJ(t) − 1 represents the relative

height of the jump; further assume that J(t), BH(t) and Qt are independent of each
other.

When Hurst exponent H 6= 0.5, fractional Brown motion is neither a Markov
process, nor a semi-martingale. Therefore, we cannot use normal stochastic integrals
to analysis. Wick integral of fractional Brownian motion, a special integral, is used
in this paper [2,3]:

∫ b

a

f(t, ω)dBH(t) = lim
|∆|→0

n−1∑
k=0

f(tk, ω)♦(BH(tk+1)−BH(tk)), 0.5 < H < 1 (4)
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where ♦ represents Wick integral, suppose 0.5 < H < 1. According to the stochastic
integral (4), the definition and properties of the function exp♦(X) [3], we can get:

S(T ) = S(0)exp♦

(∫ T

0

µ(t)dt+

∫ T

0

σ(t)dBH(t) +

QT∑
i=1

J(i)

)

= S(0) exp

{∫ T

0

(
µ(t)−Hσ2(t)t2H−1

)
dt+

∫ T

0

σ(t)dBH(t) +

QT∑
i=1

J(i)

}
(5)

E (S(T )) = S(0) exp

(∫ T

0

µ(t)dt

)
(6)

3. THE METHOD OF INSURANCE ACTUARIAL PRIC-
ING

Bladt and Rydberg firstly put forward the method of insurance actuarial pricing
in 1998 [7]. Compared with the traditional method of martingale pricing, this
method’s greatest merit is that it doesn’t make any economic assumptions to the
financial market, that is to say it has nothing to do with the basic assumption of
market without arbitrage. No matter there is arbitrage or whether it is complete,
it is effective. This text is to discuss the pricing of foreign exchange option by
insurance actuarial pricing method. Next we will introduce the basic method of
insurance actuarial pricing.

Definition 3.1. Suppose S(t) is the pricing process of time [0, T ],
∫ T

0
β(t)dt is

the expected rate of return, define:
∫ T

0
β(t)dt = ln

E[S(T )]

S(0)
.

Definition 3.2. Let C(K,T ) be the value of European call option at time now,
and let P (K,T ) be the value of European put option, then we have

C(K,T )

= E

[(
exp(−

∫ T

0

β(t)dt)S(T )P f (0)−KP d(0)

)
I{exp(−

∫ T
0
β(t)dt)S(T )P f (0)>KPd(0)}

]
(7)

P (K,T )

= E

[(
KP d(0)− exp(−

∫ T

0

β(t)dt)S(T )P f (0)

)
I{KPd(0)>exp(−

∫ T
0
β(t)dt)S(T )P f (0)}

]
(8)

where K is the exercise price, T is the expiration date, S(t) is the price process of

exchange rate, E(·) represents mathematical expectation, IA(ω) =

{
1, ifω ∈ A
0, ifω /∈ A .
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4. PRICING FOREIGN EXCHANGE OPTION UNDER FRAC-
TIONAL JUMP-DIFFUSIONS

Theorem 4.1. Assume that foreign Bond price P f (t) and domestic Bond price
P d(t) respectively meet Equation (1) and (2), the price process of foreign exchange
rate S(t) meet Equation (3), K is the exercise price, T is the expiration date, then
we obtain the insurance actuarial pricing formulas of foreign exchange option as
follows:

C(K,T ) =

∞∑
n=0

e−λT (λT )
n

n!

(
P f (0)S(0)Φ(d

(n)
2 )−KP d(0)Φ(d

(n)
1 )
)

(9)

P (K,T ) =

∞∑
n=0

e−λT (λT )
n

n!

(
KP d(0)Φ(−d(n)

1 )− P f (0)S(0)Φ(−d(n)
2 )
)

(10)

C(K,T ) +KP d(0) = P (K,T ) + P f (0)S(0) (11)

where d
(n)
1 =

ln(S(0)P f (0)
KPd(0)

)−
1

2
σ2
H

σH
, d

(n)
2 = d

(n)
1 + σH , Φ(x) =

1
√

2π

∫ x
−∞ e−(1/2)·s2ds

represents normal distribution function, σH =
√

2
∫ T

0
Hσ2(t)t2H−1dt+ nσ2

J .

Proof. For convenience, assume thatA ,
{

exp
(
−
∫ T

0
β(t)dt

)
S(T )P f (0) > KP d(0)

}
.

According to Definition 3.2, the value of foreign exchange call option C(K,T ) sat-
isfies:

C(K,T ) = E

[
exp

(
−
∫ T

0

β(t)dt

)
S(T )P f (0)IA

]
− E

[
KP d(0)IA

]
(12)

The expected rate of return
∫ T

0
β(t)dt meets exp

(∫ T
0
β(t)dt

)
= E [S(T )] /S(0) =

exp
(∫ T

0
µ(t)dt

)
.

A , {exp(−
∫ T

0

β(t)dt)S(T )P f (0) > KP d(0)}

=

{
exp

(
−
∫ T

0

µ(t)dt

)
exp{

∫ T

0

(
µ(t)−Hσ2(t)t2H−1

)
dt+

∫ T

0

σ(t)dBH(t) +

QT∑
i=1

J(i)}

>
KP d(0)

S(0)P f (0)

}

=

{∫ T

0

σ(t)dBH(t) +

QT∑
i=1

J(i) > In
KP d(0)

S(0)P f (0)
+

∫ T

0

Hσ2(t)t2H−1dt

}

Note that
∫ T

0
σ(t)dBH(t) ∼ N

(
0, 2

∫ T
0
Hσ2(t)t2H−1dt

)
,
QT∑
i=1

J(i) ∼ N
(
−QTσ2

J/2, QTσ
2
J

)
,

J(t), BH(t) and Qt are independent of each other, therefore

ξ ,
∫ T

0

σ(t)dBH(t) +

QT∑
i=1

J(i) ∼ N

(
−QTσ2

J

/
2, QTσ

2
J + 2

∫ T

0

Hσ2(t)t2H−1dt

)
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Let η , (ξ +QTσ
2
J

/
2)
/
σH , σH =

√
2
∫ T

0
Hσ2(t)t2H−1dt+ nσ2

J , then A =
∞⋃
n=0
{η > −d(n)

1 }, η ∼ N(0, 1).

First we compute E
[
exp

(
−
∫ T

0
β(t)dt

)
S(T )P f (0)IA

]
:

E

[
exp(−

∫ T

0

β(t)dt)S(T )P f (0)IA

]

=

∞∑
n=0

e−λT (λT )
n

n!
E

[
exp(−

∫ T

0

µ(t)dt)S(T )P f (0)IA|QT = n

]

=

∞∑
n=0

e−λT (λT )
n

n!
P f (0)S(0)E

[
exp(−

∫ T

0

Hσ2(t)t2H−1dt+

∫ T

0

σ(t)dBH(t)

+

n∑
i=1

J(i))I{η>−d(n)
1 }

]

=

∞∑
n=0

e−λT (λT )
n

n!
P f (0)S(0)E

[
exp(−

∫ T

0

Hσ2(t)t2H−1dt+ σHη −
nσ2

J

2
)I{η>d(n)

1 }

]

=

∞∑
n=0

e−λT (λT )
n

n!
P f (0)S(0)

∫ ∞
−d(n)

1

1√
2π

exp(−σ
2
H

2
+ σHx−

x2

2
)dx

=

∞∑
n=0

e−λT (λT )
n

n!
P f (0)S(0)

∫ ∞
−(d

(n)
1 +σH)

1√
2π

exp(−x
2

2
)dx

=

∞∑
n=0

e−λT (λT )
n

n!
P f (0)S(0)Φ(d

(n)
1 + σH)

(13)

Next we compute E
[
KP d(0)IA

]
:

E
[
KP d(0)IA

]
=

∞∑
n=0

e−λT (λT )
n

n!
E
[
KP d(0)IA|QT = n

]
=

∞∑
n=0

e−λT (λT )
n

n!
E
[
KP d(0)I{η>−d(n)

1 }

]
=

∞∑
n=0

e−λT (λT )
n

n!
KP d(0)Φ(d

(n)
1 )

(14)

Integrated (12), (13), (14), the insurance actuarial pricing formulas of foreign
exchange call option are obtained. Similarly, the pricing formula (10) can also be
proved. Formula (9) minus formula (10),

C(K,T )−P (K,T ) =

∞∑
n=0

e−λT (λT )
n

n!
(P f (0)S(0)−KP d(0)) = P f (0)S(0)−KP d(0)

So the formula (11) is proved.
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5. CONCLUSION

Foreign exchange option, as a financial derivative, plays an important role in the
financial market. Thus, how to accurately price both in theory and practice is
extremely important. In order to more accurately portray the authenticity of foreign
exchange market, this paper applies fractional Brown motion in the fractal market
hypothesis and combines with jump diffusion process so as to establish the pricing
model of foreign exchange option under fractional jump-diffusion. Moreover, this
paper discusses the pricing issue of European foreign exchange according to the
insurance actuary pricing method and put forward the pricing formula of foreign
exchange call and put option, as well as their relationships. No matter whether
the financial market has arbitrage or not, no matter it is complete or not, this
conclusion is valid.
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