Progress in Applied Mathematics ISSN 1325-251X [Print]
Vol. 1, No. 2, 2001, pp. 30-42 ISSN 1925-2528 [Online]

www.cscanada.net www.cscanada.org

Exp-Function Method for Duffing Equation and
New Solutions of (2+1) Dimensional Dispersive
Long Wave Equations

M. Ali Akbar®*
Norhashidah Hj. Mohd. Ali?

Abstract: In this paper, the general soluti ons of t he Duffing equation with third
degree nonlinear term is obtain using t he Exp-function method. Using the Duffing
equation and its general solution, the ne w and general exact solution with  free
parameter an d arbitrary functions oft he (2+1) dimensional disp ersive long wave
equation are obtained. Setting free parameters as special values, hyperbolic as well as
trigonometric function so lutions are also derived. With the aid of sy mbolic
computation, the Ex p-function m ethod serves as an effective tool i  n sol ving the
nonlinear equations under study.

Key words: Exp-Function Method; Du ffing Equation; Exact Solutions; Nonli near
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1. INTRODUCTION

Nonlinear phenomena appear in larg e range of scientific fields, such as ap plied mathematics, physics,
engineering problems, plasma physics, fluid mechanics, nonlinear optics, solid state physics, chemical
kinetics, geochemistry etc. There fore, the investigation of th e exact solutions for nonlinear evo lution
equations (NLEEs) plays an important role in the study of nonlinear physical phenomena. Yet, solving
nonlinear di fferential equat ions co rresponding t o t he nonlinear p roblems are oft en com plicated.
Particularly, getting their explicit solutions is even more difficult. Up to present, a lot of new methods for
solving nonlinear differential equations are developed, for example, the tanh-function method!"?, the
extended tanh method®!, Hirota’s bilinear method !, Backlund transformation method [, F-expansion
method ° ¥, si ne-cosine method "%, Jacobian ellip tic fun ction m ethod!''3 h omogeneous balance
method!"”, h omotopy pert urbation m ethod"*"'") va riationali teration m ethod"**", Ad omian
decomposition method!*?, auxiliary equation method™*! and so on. Recently, He and Wu*"! proposed
a straightforwad and concise method called the exp-function method to obtain the generalized solitonary
solutions and periodic solutions of NLEEs. The Exp-function method has also been successfully applied
to many kinds of NLEEs***!, such as difference-differential equations, high-dimensional equations,
variable-coefficient equations, discrete equations, etc. Generally speaking, exact solutions of NLEEs
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obtained by most of these methods are written as a polynomial in several elementary or special functions
that satisfy a first-order ordinary differential equation called the sub-equation, for example, the Riccati’s
equation. Second or higher-order nonlinear differential equations have not been considered. It is obvious
that the more the solutions of the sub-equation we find, the more the exact solutions of the considered
NLEEs we may obtain. The aim of the present paper is to use the Exp-function method?” to seek general
solutions of the Duffing equation:

2

z

+aLz-¢7°=0 (1)
der
where @), and & are real parameters. Then Eq. (1) is employed as a new auxiliary equation and its

general solutions are applied to find new exact solutions of the (2+1)-dimensional dispersive long wave
equations:

Uy, +H, + (U, =0 (2)
Ht+(uH+u+qu)X:0 3)

In the case of compatibility condition for a weak lax pair, Boiti et al. [44] first introduced Eqs. (2) and
(3). A variational model of Egs. (2) and (3) was found by He!'"! using the semi-inverse method.

2. EXP-FUNCTION METHOD FOR EQ. (1):

Following the Exp-function method”), we suppose that the solution of Eq. (1) can be expressed in the
form:

a,exp(I&+m)+a,+a, exp(—(1£+m))
b, exp(l £ +m)+Db, +b , exp(—(l1 £ +m)) )

where 8,,8,,a_,, b1 5 bO R b_l ,K and M are constants which are unknown and to be determined later.

2(5) =

Substituting Eq. (4) into Eq. (1) an d equating the coefficients of all powers of exp[i(l £ + )]
(i=0,£1,£2,+3,£4) to zero yields a set of agebraic equations for &,,8,,a_,,b,,0,,b ,,1and M.
Solving the system of algebraic equations with the help of Maple 12, we find:

2 22
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4a_la)0\/g
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I:ila)(],m:m’a—lzojaO:aO’al:oyb—lzb—l,b():(),blzl 82a0 (6)
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Therefore, we obtain the following general solutions of Eq. (1) for (5) and (6) respectively:

4a,a  Nea, +bym, +2Vea  exp(FV2m,& —m)}

2(§)=F L+
Ve (ol —cal)exp(xV2m,&+m)+4Veh, w,a_ +4ea’ exp(FV2wm, & —m)
(®)
Swia, b
2(8)=— . o ©)
ga, exp(tiw, & +m)+8w,b’, exp(Fiw,& —m)
And for (7), we obtain the constant solution Z = if/o—o of the equation (1).
&
2 - a =1
Setting Ve , o2V , by = —2 and simplifying Eq. (8), we obtain
@,
_ . n
2(5):& 1+s1nh(\/2a)0§_m) (103)
Ve \/2icosh(\/2a)0§i m)
h(v2 +m)+1
o Z(é):& csch(V @, & £m)F1) (10b)
Ve 2ese h(\/2a)0 E+ m)icoth(\/2w0§i m)
And simplifying Eq. (9), we obtain
2(5) =+ ga)o sec(w, &+ m)
¢ an
where M is replaced by imand b :\/8—&0'
2\2w,

These are the exact solutions of the Eq. (1). We observe that equations (8) and (9) are the general
exact solutions of the Duffing equation. The more important point is, if we use Eq. (1) and its general
solutions (8) and (9), we can obtain new and general exact solutions of Egs. (2) and (3). The solution
(10b) (equivalent to Eq. (10a)) is the fractional form of csch and coth functions. They are useful to
obtain singular travelling wave solutions with important physical significance and solution (11) is also
useful to obtain singular travelling wave solutions.

3. EXACT SOLUTIONS OF EQS. (2) AND (3):

Using the homogeneous balance method, we suppose that Egs. (2) and (3) have the following formal
solutions:

u:aO(y’t)_'_al(y’t)Z(é:) (12)
H =b,(y,t) +b,(y,1) 2(£) +b, (y,t) 2°($) (13)
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where 2(5) satisfies Eq. (1), §:|X+77(y’t), a,(y,t), a(y,t), by(y,t), b(y,t),

b2 (y,t) and n(y, 1) are functions of Y and t to be determined later, | is a nonzero constant.
Substituting Eqgs. (12) and (13) together with Eq. (1), into Egs. (2) and (3), the left-hand sides of Egs.

’ i i—01i=
(2) and (3) are converted into two polynomials of 2 (8)2(9)(1=01]=0,12,.) , then putting
each coefficient to ze ro, we geta set of over-determined partial differential equations for a,(Y,t),

a,(y,t), by(y,t), b(y,t), b,(y,t) and 101 o5 follows:
62
oy ot

a,(y,)=0

2a’(y,bl ayn(y D +4b,(y,H) 17 +2a,(y,b)l 8ya (Y1) =0

oy ot

2 8 —
a,(y,t)—a,(y, t)a(y,t)layn(y,t) b (y,Dl a(y,t)ayn(y,t)an(y,t)—o

2

ao(ynt) a(yt)l+ a(yt)ayﬂ(yt)+aya(yt) f7(yt)+a(yt)|—ya(yt)+a(yt)a§at

bl(y:t)l +a0(y:t) a1(yat)|577()/,0"‘al(yat)a—yﬂ(y,t)aﬂ(yat) =0

n(y,)=0

0
2b,(y,t)I* +a’ (y,t)| =—n(y,t)=0
(y, 0" + (y)ayn(y)

0
—a/(y,H)I’ =0
6ya(y)

0
—Db,(y,t)=0
p ,(Y,1)

0

3al(y,t)|bz(y,t)+3a1(y,t)|2577()/,0=0

0 0
——a,(y,HlP +=b(y,t)=0

Y (Y, 1) P (Y,1)

0

2b2(y:t)a77(y7t)+2a‘0(y:t)b2(y’t)|+2al(y:t)|bl(yat):0
0
—b,(y,t)=0
ot b (Y,1)

—a1<y,t>lz%n(y,thbl(y,t)%n(y,twa1<y,t>l Fay(y.Db (YD1 +2,(y.Hby (¥, =0
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Solving the set of over-determined partial differential equations by the use of Maple 12, we obtain

=1 ab=0'®) . a(yb=v2l , b(y,h=-1-f(y) , b(yt)=0 ,

b,(y.)=f(y)_n(y.H)=[f (y)dy+g(®) "

d

/

g ()=—-9()
where F(y) and g are arbitrary functions of Y and t respectively, and dt .

Employing solution (8) and from Egs. (12)-(14), we obtain the following exact solutions of Egs. (2)
and (3):

4aya_ {(Nea, +byam, +2Vea_ exp(FV2w,E—m
v=9 (t)+\/2|[+\/_g++(a)§b2—gao)e(;(p(f\/225+0m)0+4\/5b cluoap( 45a031§exp()$}\/2a)0§—m)
( 5)
H=-1-1(y)
4w,a 1{\/£a0+b0a)0+2\/5a1exp(+\/2a)0§ m)} 5
\/5 +(a)§b2—sao)exp(+\/2a)0§+m)+4\/5b a)oa11“45&lexp(+\/2a)09g m)

(16)

+H(YI[F

§:Ix+jf(y)dy+g(t)'

Using solution (9) and from Egs. (12)-(14), we obtain the following exact solutions of Egs. (2) and
G):

where

2
u=g'(t)+v2l— _ 8a)0a0b;12 —
ga, exp(tiw, & +m)+8awyb”, exp(Fiw,& —m) R 7
8awia,b
H=-1-f(y)+f 00 1 :
) (y)[gag exp(tiw, & +m)+8w;b’, exp(iia)of—m)] a4 g
here §:Ix+jf(y)dy+g(t).
1 b, :E 1
T P e T s -
If we set ¢ o, € and simplify then the solution (15) and (16) become
=g’ (t)+\/2 o, 1¥sinh(V2w, £ £m)
Ve \/2+cosh(\/2a)of+m) (19)
1Fsinh(N 2@, E£m) ,
H=—1-f(y)+2 f 0
) ( )[\/2icosh(\/2a)0§i m) (20)
And simplifying Eqs (17) and (18), we obtain
(t)Jr o sec(@, £ m)
V @1
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2
H=-1-f(y)+=a; f(y)sec’ (@, £+ m)
¢ (22)
We have checked the solutions (8)-(9) and (15)-(22) with the help of Maple 12 by putting them into

the orig inal eq uations and found th at t hey satisfy the Eqs. (1)-(3). To th e best of our knowledge,
solutions (15)-(16) and (17)-(18) are new and have not been found in the literature.

4. ZHANG ET AL. 21 SOLUTIONS

Zhang et al.'*® also investigated the solutions of Egs. (2) and (3). They have used the Recatti’s equation
as auxiliary equation and found the solutions as follows:

L_pbkVe g® L, sech(Vag+£,)
2¢C k V(b* —4ac)Thsech(Va&+&,) o 3
H o1 KO 420 T e sech_(\/af+5m)
4c V(b* —4ac)Fbsech(Na&+&,)
o sech’(Va&+¢&))
Bk T ) 5" —4ac)Tbsech(Vaz + 2 )T
(24)
b 4ac>0 andé:kx+.ff(y)dy+g(t)
And
FELLELN: {G PP csoh(Vas+ )
2¢ k V(@4ac-b*)Fbesch(Va&+&,) Q3
H o KO 420 F ) ) e cschEVaf%og)
4c V(4ac-b*)Fbesch(Va&+&,)
o csch’(Vaé+¢&,,)
Back f(y)[\/(4ac—b2)$bcsch(\/a§+503)]2 )
L p-dac<o  E=kor[f(y)dy+gt)

From Egs. (2 3)-(26), we observe that no choice of a,b and C yield the solutions (19)-(22). To
identify the distinctness of two so lutions, the simple and p owerful tool is to plot the graphs of the

solutions. T he s olutions ha ving t he sam e gra phs are usually eq uivalent. Some gra phs o f sol utions
(19)-(26) are given below:

Fig. land Fig. 2 are obtained from sol utions (19) and (2 0) for U and H respectively when
a=1lay=l =l m=wmn/2g(t)=¢t F(i=1,  t=0

and
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10 _10
Fig 1. Obtamned from solution (19

1
!—-|_..|_..|_..|_..|_..|_..|_..|_..
Lol S I R s S et Y

10

Fig Z: Obtained from solution (200

Fig. 3and Fig. 4 are obtained from sol utions (21)and (22) for U and H respectively when
a=1la=1l=Lm=0,g(tl=¢t f(¥l=Ladt=0
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Fig 3: Obtained from solution (217
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Fig 4: Obtaitned from solution (22

Fig. 5andFig. 6are obtained from sol utions (23)and (24) for U and H respectively when
a=1b=3c=2Lk=L§, =w/Z, g(t) =t f(¥r)=1Ladt =0
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Fig. 5 Obtamned from Zhang et al. solution (23)
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Fig é: Obtamned from Zhang et al. solution (2d)

Fig. 7andFig. 8 are obtained from sol utions (23)and (24) for U and H respectively when
a=b=c=k=1¢;=m/2, g(t)=¢ f(¥=Landt =10
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Fig 7: Obtained from Zhang et al, solution (25)

Fig & Obtaned from Zhang et al. solution (26)

It is seen, that the figures obtained from solutions (19)-(22) are different from the figures obtained
from solutions (23)-(26).

5. CONCLUSION

Based o n t he exact sol utions of t he D uffing eq uation andits general sol utions obtained by t he
Exp-function method, some new e xact solutions with free parameters and a rbitrary functions of the
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(2+1)-dimensional di spersive l ong wave equations are obtained, from w hich s ome hy perbolic a nd
trigonometric function so lutions are also derived when setting the free parameters as special values .

Solutions involving free parameters and arbitrary functions have rich local structures and are important
for the explanation of physical phenomena. The presented method can also be applied to other NLEEs.
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