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Abstract:  The purpose of this study is to implement a new analytical method which is a 

combination of the variational iteration method (VIM) and the Padé approximant for solving 

steady flow over a rotating disk in porous medium with heat transfer. The velocity and 

temperature profiles are shown also the influence of the porosity parameter on them is discussed 

in detail. The solution is compared with the numerical solution. Comparisons between the 

VIM-Padé and the numerical solution reveal that the new technique is a promising tool for 

solving the above problem. It is predicted that the VIM-Padé can have wide application in 

engineering problems (especially for boundary-layer and natural convection problems).  
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1. INTRODUCTION 

Large varieties of physical, chemical, and biological phenomena are governed by nonlinear evolution 

equations. The importance of obtaining the exact solutions, if available, of those nonlinear equations 

facilitates the verification of numerical solvers and aids in the stability analysis of solutions. Analytical 

solutions for nonlinear partial differential equations play an important role in nonlinear science, especially 

in nonlinear physical science since they can provide much physical information and more insight into the 

physical aspects of the problem and thus lead to further applications. Many authors mainly had paid 

attention to study solutions of nonlinear equations by using various methods, such as the   expansion 

method
[1]

, the Adomian's decomposition method
[2]

 and the homotopy perturbation method
[3]

. 

The VIM was first proposed by He
[4,5]

 and systematically illustrated in 1999
[6]

 and used to give 

approximate solutions of the problem of seepage flow in porous media with fractional derivatives. The VIM 

was successfully applied to autonomous ordinary differential equation
[7]

, to nonlinear partial differential 

equations with variable coefficients
[8]

, to Schrodinger-KdV, generalized KdV and shallow water 

equations
[9]

, to Burger’s and coupled Burger’s equations
[10],

 to linear Helmholtz partial differential 

equation
[11]

 and other fields
[12,13]

. The VIM is useful to obtain exact and approximate solutions of linear and 

nonlinear differential equations. In this method, general Lagrange multipliers are introduced to construct 

correction functional for the problems. The multipliers can be identified optimally via the variational theory. 

There is no need of linearization or discretization, and large computational work and round-off errors is 

avoided. It has been used to solve effectively, easily and accurately a large class of nonlinear problems with 
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 approximation
[14,15]

.  

Ismail and Rabboh
[16]

 presented a restrictive Padé approximation for the generalized Fisher and 

Burger-Fisher equations. The Padé approximants, that often show superior performance over series 

approximations, provide a successful tool and promising scheme for identical applications. Rashidi and 

Shahmohamadi
[17]

 presented a novel technique for solution of three-dimensional Navier-Stokes equations 

for the flow near an infinite rotating disk by combination of the VIM and the Padé approximant. 

The fluid flow due to an infinite rotating disk was first considered by von Karman in 1921
[18]

. He 

introduced the similarity transformations which reduced the governing partial differential equations to 

ordinary differential equations. Cochran
[19]

 obtained asymptotic solutions for the steady problem 

formulated by von Karman and Benton
[20]

 solved the unsteady state of this problem. Millsaps and 

Pohlhausen
[21]

 considered heat transfer from a rotating disk maintained at a constant temperature for 

different values of Prandtl numbers in the steady state. Attia
[22-24]

 studied the influence of an external 

uniform magnetic field on the flow due to a rotating disk. The effect of uniform suction or injection through 

a rotating porous disk on the steady hydrodynamic or hydromagnetic flow induced by the disk was 

investigated
[25-27]

.  

The main goal of the present study is to find the totally analytical solutions for steady flow over a 

rotating disk in porous medium with heat transfer using the VIM-Padé. This problem studied first by 

Attia
[28]

 in 2009 and exerted the similarity solution.  

2. FLOW ANALYSIS AND MATHEMATICAL FORMULATION 

Set the disk in the plane 0z   and the space 0z   is equipped by a viscous incompressible fluid. An 

insulated infinite disk rotates about an axis perpendicular to its plane with constant angular speed   

through a porous medium where the Darcy model is assumed
[29]

. Otherwise the rest fluid is under pressure 

.P The equations of steady motion are given by 

0,
u u w

r r z

 
  

 
 (1) 

2 2 2

2 2 2

1
,

u u v p u u u u
u w u

r z r r r r Kr r z


 
        

          
       

 (2) 

2 2

2 2 2

1
,

v v uv v v v v
u w v

r z r r r Kr r z


 

      
        

      
 (3) 

2 2

2 2

1
,

w w p w w w
u w w

r z z r r Kr z


 

       
       

       
 (4) 

where ,u v  and w  are velocity components in the directions of ,r   and z  respectively. p  is the pressure, 

  is the coefficient of viscosity,   is the density of the fluid and K  is the Darcy permeability. Attia
[28]

 

introduced von Karman transformations
[18]

 

                               , , , , ,u r F v r G w H z p p p P             (5) 

where   is a non-dimensional distance measured along the axis of rotation, , ,F G H  and P  are 

non-dimensional functions of   and   is the kinematic viscosity of the fluid,   
[28]

. Upon 

substitution of Eq. (5) into the Navier-Stokes equations, a set of similarity non-linear ordinary differential 

equations are obtained 

2 0,
dH

F
d

   (6) 
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2
2 2

2
0,

d F dF
H F G M F

dd 
      (7) 

2

2
2 0,

d G dG
H F G M G

dd 
     (8) 

2

2
0,

d H dH dP
H M H

d dd  
     (9) 

M K   is the porosity parameter. The boundary conditions are as follow 

(0) 0, (0) 1, (0) 0,F G H    (10a) 

( ) 0, ( ) 0, ( ) 0,F G P       (10b) 

Eq. (10a) indicates the no-slip condition of viscous flow on the disk. Far from the surface of the disk, all 

fluid velocities must vanish aside the induced axial component as indicated in Eq. (10b)
[28]

. Eq. (9) can be 

used to compute the pressure distribution. 

The energy equation without the dissipation terms takes the form
[21]

 

                     
2 2

2 2

1
0,p

T T d T d T dT
c u w k

r z r rz r


   
      

      
 (11) 

where T  is the temperature of the fluid, pc  is the specific heat at constant pressure of the fluid, and k  is 

the thermal conductivity of the fluid. The non-dimensional variable   introduced as follow 

,
w

T T

T T
 







 (12) 

where 
wT  and T

 are the temperature of the surface of the disk and the temperature at large distances from 

the disk, respectively. The energy equation is reduced by using Eqs. (5) and (12) 

2

2

1
0,

Pr

d d
H

dd

 


   (13) 

where Pr  is the Prandtl number, Pr / .p kc k  The boundary conditions are                                                                                                                                                                                                                                                                     

(0) 1,   (14a) 

( ) 0.    (14b) 

 

3. BASIC CONCEPTS OF THE VIM 

To illustrate the basic concepts of the VIM, we consider the following differential equation: 

                                                          Lu + Nu = g(t), 
(15) 

 where ,L  N  and g(t)  are the linear operator, the nonlinear operator and a heterogeneous term, 

respectively. The VIM was proposed by He where a correction functional for Eq.  (15) can be written as 

1
0

( ) ( ) [ ( ) ( ) ( )]d , 0.
t

n n n nu t u t Lu N u g n                       (16) 

It is obvious that the successive approximations 
ju , 0j   can be established by determining ,  a general 

Lagrangian multiplier, which can be identified optimally via the variational theory. The function nu  is a 
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restricted variation which means 0.nu   Therefore, we first determine the Lagrange multiplier   that 

will be identified optimally via integration by parts. The successive approximations 
1( ), 0nu t n   of the 

solution ( )u t  will be readily obtained upon using the obtained Lagrange multiplier and by using any 

selective function 
0 .u  When   determined, then several approximations ( ),ju t 0,j   follow immediately. 

Consequently, the exact solution may be obtained by using 

n
lim .nu u


                                            (17) 

4. THE VIM SOLUTION 

To solve the system of Eqs. (6)–(9) and (13) by means of the VIM, we construct the following correction 

functionals: 

1 1
0

( )
( ) ( ) 2 ( ) d ,n

n n n

H
H H F

 
    




 
   

 
  (18) 

2

2 2

1 2 20

( ) ( )
( ) ( ) ( ) ( ( )) ( ( )) ( ) d ,n n

n n n n n

F F
F F H F G M F

  
       




  
      

 
  (19) 

2

1 3 20

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) d ,n n

n n n n n

G G
G G H F G M G

  
       




  
     

 
  (20) 

 

2

1 4 20

( ) ( ) ( )
( ) ( ) ( ) ( ) d ,n n n

n n n n

P H H
P P H M H

   
     

 


   
     

  
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(21) 

 

2

1 5 20

( ) ( )1
( ) ( ) ( ) d ,

Pr

n n

n n nH
    

      




  
   

 
  (22) 

where 
1 2 3 4, , ,     and 5  are the general Lagrangian multipliers and ( ),nH   ( ),nF   ( )nG   and ( )n   

are considered as restricted variations. To find the optimal values of 
1 2 3 4, , ,     and 

5 , we have 

1 1
0

( )
( ) ( ) 2 ( ) d ,n

n n n

H
H H F

 
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
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  

                   

(25) 

 

2
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n n n n

P H H
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   
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(27) 

or  
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1 1
0

( )
( ) ( ) d ,n

n n

H
H H

 
      




 
   

 
                                  (28) 

2

1 2 20

( )
( ) ( ) d ,n

n n

F
F F

 
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

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   
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(29) 

2

1 3 20

( )
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n n
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G G

 
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

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   
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                       (30) 

1 4
0

( )
( ) ( ) d ,n

n n

P
P P

 
      




 
   
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   (31) 

2

1 5 20

( )1
( ) ( ) d .

Pr

n

n n

  
        




 
   
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  (32) 

Its stationary conditions can be obtained as follows 

1 11 ( ) 0, ( ) 0,
 

   


       (33) 

2 2 21 ( ) 0, ( ) 0, ( ) 0,
   

     
 

                (34) 

3 3 31 ( ) 0, ( ) 0, ( ) 0,
   

     
 

                        (35) 

4 41 ( ) 0, ( ) 0,
 

   


                          (36) 

5 5 51 ( ) 0, ( ) 0, ( ) 0.
   

     
 

      (37) 

The Lagrange multipliers, can be identified as follows 

1 4 1,      2 3 5 ( ),                                                  (38) 

and the following variational iteration formulas can be obtained 

1
0

( )
( ) ( ) 2 ( ) d ,n

n n n

H
H H F

 
   




 
   

 
  

  

(39) 

 
2
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1 20

( ) ( )
( ) ( ) ( ) ( ) ( ( )) ( ( )) ( ) d ,n n

n n n n n

F F
F F H F G M F

  
        




  
       

 

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1 20
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n n n n n

G G
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

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      

 
  

                     

(41) 

 
2

1 20

( ) ( ) ( )
( ) ( ) ( ) ( ) d ,n n n

n n n n

P H H
P P H M H

   
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 


   
     
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(42) 

 
2

1 20

( ) ( )1
( ) ( ) ( ) ( ) d .

Pr

n n

n n nH
    

       




  
    

 
  

 

(43) 

Now we must start with arbitrary initial approximations. Therefore according to (10a) and (14a) it is 

straight-forward to choose initial guesses 
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0 0 0 0 0( ) 0, ( ) , ( ) 1 , ( ) 0, ( ) 1 .H F G P                (44) 

By the above iteration formulas (39)–(43) and the initial guesses (44), we can obtain the following results: 

2

1( ) ,H                                                                     

(45) 
2 3 3

1( ) ,
2 3 6

M
F

  
      (46) 

 2 2

1

1
( ) 1 ( 2) 3 ,

6
G M M           (47) 

1 0,P   (48) 

1( ) 1 ,       (49) 

After the 10th iteration, we apply the padé approximant to the obtained results (see [17] and [30]).  

For 0M   and Pr 0.7,  the VIM-Padé solutions are as follows: 

2 3 4

[4,5]

2 3 4 5

H( )  ( 0.5124 0.000709725 0.0100011 ) (1 0.644746 

0.237953 0.0505405 0.00681915 0.000280046 ),

    

   

    

   
 

 

(50) 

 
2 3 4

[4,8]

2 3 4

5 6 7 8

F( )  (0.5124 0.274009 0.276441 0.0341633 )

(1 0.436192 0.56219 0.365289 0.174719 

0.0540587 0.0129953 0.00201287 0.000288859 ),

    

   

   

   

   

   

 

 

(51) 

 

  
2

[1,5]

3 4 5

G( )  (1 0.564031 ) (1 1.17383 0.715802 

0.263796 0.0678037 0.00579835 ),

   

  

   

  
 

 

(52) 

2 3

[1,3]P( )  (1.0362 ) (1 0.965064 0.539018 0.071849 ),         (53) 

2

[1,5]

3 4 5

( )  (1 0.0198273 ) (1 0.342827 0.110733 

0.0357668 0.00208179 0.00149051 ).

    

  

   

  
 

 

(54) 

For 0.5M   and Pr 0.7,  the VIM-Padé solutions are as follows:  

2 3 4

[4,4]

2 3 4

H( )  ( 0.385 0.0129432 0.0051507 ) (1 0.832182 

0.325549 0.0691014 0.00692846 ),

    

  

    

  
 

 

 (55) 

2 3 4

[1,7]

5 6 7

F( )  (0.385 ) (1 1.2987 0.869958 0.386831 0.127323 

0.0334909 0.00770411 0.00176691 ),

     

  

    

  
 

 

(56) 

2 3

[1,7]

4 5 6 7

G( )  (1 0.619893 ) (1 1.46689 0.992459 0.416139 

0.119733 0.0257693 0.00419788 0.000499608 ),

    

   

    

   
 

 

(57) 

2 3

[1,3]P( )  (0.862 0.878514 ) (1 1.205712 0.795562 0.316266 ),          (58) 

2

[1,5]

3 4 5

( )  (1 0.191469 ) (1 0.414469 0.0924265 

0.0206111 0.000242975 0.000746562 ).

    

  

   

  
 

 

(59) 

For 1M   and Pr 0.7,  the VIM-Padé solutions are as follows: 
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2 3 4

[4,5]

2 3 4 5

H( )  ( 0.31 0.0159129 0.0119675 ) (1 1.02394 

0.482085 0.129043 0.0195857 0.00141672 ),

    

   

    

   
 

 

(60) 

2 3 2

[3,7]

3 4 5 6 7

F( )  (0.31 0.631111 0.0893737 ) (1 0.42294 1.70891 

1.49028 0.735346 0.239268 0.0532043 0.00739484 ),

     

    

    

    
 

 

(61) 

2 2

[2,6]

3 4 5 6

G( )  (1 0.40573 0.0246593 ) (1 1.47373 1.04928 

0.458437 0.144264 0.0326342 0.0061114 ),

    

   

    

   
 

 

(62) 

2 3

[1,3]P( )  (15.21 0.825729 ) (1 1.3822 0.968333 0.473635 )          (63) 

 
2 2

[2,6]

3 4 5 6

( )  (1 0.4318 0.00722049 ) (1 0.6018 0.109527 

0.0186195 0.000194859 0.000384961 0.000155439 ).

     

   

    

   
 

 

(64) 

5. RESULTS AND DISCUSSION 

Graphical representation of results is very useful to demonstrate the efficiency and accuracy of the 

VIM-Padé for above problem. This section describes the influence of some interesting parameters on the 

velocity and temperature fields. In particular, attention has been focused to the variations of the porosity 

parameter M  on the velocity, pressure and temperature fields, respectively. Figures 1-3 show the 

normalized velocity profiles ( ), ( )H F   and ( )G   obtained by the VIM-Padé in comparison with the 

numerical. From these figures, one can see a very good agreement between the purely analytical results of 

the VIM–Padé and numerical results. Figure 4 indicates the influence of the porosity parameter M on the 

temperature and the thermal boundary-layer thickness. Figure 5 shows the normalized pressure profile 

obtained by the VIM-Padé for different value of the porosity parameter M . Derivatives of functions at 

0  for different value of the porosity parameter M are listed in Table 1.    

 
Table 1: Derivatives of functions at 0   

 
 

 

VIM-Padé solutions 
M  

0  0.5  1  

(0)F             51240.0              38544.0              30920.0  

)0(G           60981.0            84715.0            06851.1  

)0(            32298.0            22310.0            16944.0  
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Figure 1: The profile of ( )H   obtained by the 10th-order approximation of the VIM-Padé in comparison with the 

numerical solution for different value of the porosity parameter M  

 

 
Figure 2: The profile of ( )F   obtained by the 10th-order approximation of the VIM-Padé in comparison with the 

numerical solution for different value of the porosity parameter M  

 

 
Figure 3: The profile of ( )G   obtained by the 10th-order approximation of the VIM-Padé in comparison with the 

numerical solution for different value of the porosity parameter M  
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Figure 4: The profile of ( )   obtained by the 10th-order approximation of the VIM-Padé in comparison with the 

numerical solution for different value of the porosity parameter M  

 

 
Figure 5: The profile of )(P  obtained by the 10th-order approximation of the VIM-Padé for different value of the 

porosity parameter M  

6. CONCLUSIONS 

In this letter, combination of the variational iteration method and the Padé approximant was used for 

finding the totally analytic solutions of the system of nonlinear ordinary differential equations derived from 

similarity transform for the steady flow over a rotating disk in porous medium with heat transfer. The 

VIM-Padé was used in a direct way without using linearization, perturbation or restrictive assumptions. The 

validity of our solutions is verified by the numerical results. Consequently, the present success of the 

VIM-Padé for the highly nonlinear problem of steady flow over a rotating disk in porous medium with heat 

transfer verifies that the method is a useful tool for nonlinear problems in science and engineering. 
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