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Enumeration of General t-ary Trees and Universal Types

Zhilong ZHANG1

Charles Knessl1,∗

Abstract: We consider t-ary trees characterized by their numbers of nodes and their total path
length. When t = 2 these are called binary trees, and in such trees a parent node may have up to
t child nodes. We give asymptotic expansions for the total number of trees with nodes and path
length p, when n and p are large. We consider several different ranges of n and p. For n→ ∞ and
p = O(n3/2) we recover the Airy distribution for the path length in trees with many nodes, and
also obtain higher order asymptotic results. For p→ ∞ and an appropriate range of n we obtain a
limiting Gaussian distribution for the number of nodes in trees with large path lengths. The mean
and variance are expressed in terms of the maximal root of the Airy function. Singular pertur-
bation methods, such as asymptotic matching and WKB type expansions, are used throughout,
and they are combined with more standard methods of analytic combinatorics, such as generating
functions, singularity analysis, saddle point method, etc. The results are applicable to problems
in information theory, that involve data compression schemes which parse long sequence into
shorter phrases. Numerical studies show the accuracy of the various asymptotic approximations.
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1. INTRODUCTION

1.1 Background and Motivation

Trees are the most important and fundamental data structures used in computer science. Mathematically, a
tree is an acyclic connected graph where each node has zero or more children nodes, and all nodes except
the root node have one parent node. A t-ary (t ≥ 2) tree[1, 2] T is a finite set of n (n ≥ 0) nodes with the
following properties: (a) the set is empty, T = ∅; or (b) the set consists of a root, R, and the remaining nodes
are partitioned into disjoint sets T1, · · · ,Tt, each of which is a t-ary tree such that T = {R,T1, · · · , Tt}. The
trees T1, · · · ,Tt are called subtrees of the root R. The bigger t is, the larger is the entropy of the t-ary tree.
Nodes that do not have any children are called leaf nodes, which are also referred to as external nodes or
terminal nodes. An internal node is any node of a tree that has child nodes. The depth of a node is the
length of the path from the root to the node. The height of a tree is the length of the path from the root to
the deepest node in the tree. We define T ∗n as the set of all possible t-ary trees with n nodes. The total path
length p is defined as the sum, over all nodes, of the depths. We define the set Tp as the collection of t-ary
trees that have path length p. We give an example of a 3-ary (or ternary) tree with 8 nodes in 1, to illustrate
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Figure 1: A ternary tree with 8 nodes and total path length 12

the basic concepts. In this example the total path length is p = 12.

In this paper, we discuss an application of t-ary unlabeled ordered trees (furthermore called t-ary trees)
to information theory. In particular we will discuss the counting of Lempel-Ziv’78 (called LZ’78 hereafter)
parsings[3, 4] and universal types[5, 6], which are explained below.

The LZ’78 is a dictionary-based compression scheme that maintains an explicit dictionary via variable-
rate coding. The output codewords consist of an index referring to the longest matching dictionary entry
and the first non-matching symbol. For example, let v( j) denote the binary sequence of length j2 j that lists
all the 2 j binary words of length j, and let

vn( j)
1 = v(1)v(2)· · ·v( j), n( j) =

j∑
i=1

i2i = ( j − 1)2 j+1 + 2.

It is easy to check that each v(i) is parsed into its 2i distinct i-tuples, and the maximal number of distinct
phrases in parsing vn( j)

1 is 2 j+1 − 2. For example, vn(2)
1 is parsed as

vn(2)
1 = 0, 1, 00, 01, 10, 11.

In other words, the LZ’78 scheme partitions a word into phrases (blocks) of variable size, such that a new
block is the shortest sub-word not seen before as a phrase. As a second example, consider the ternary
alphabet {A, B,C} and the word ABAACAABBCCACB. This word of length 14 will be parsed into the
phrases {A, B, AA,C, AAB, BC,CA,CB} by the LZ’78 scheme.

Tree structures have been extensively investigated for many years, and many interesting results have
been published in the literature. Various questions concerning the statistics of randomly generated binary
trees were studied in [1, 7–11]. The standard model assumes that all binary unlabeled ordered trees built
on n nodes distribute uniformly. The total number of binary trees with n nodes is |T ∗n | =

(
2n
n

)
1

n+1 . Flajolet
and Odlyzko[12] and Takacs[10] derived the average and the limiting distribution for the height, for n → ∞.
Louchard[13, 14] and Takacs[10, 11, 15] established the limiting distribution for the total path length, which
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can be expressed in terms of the Airy function[16, 17]. The Airy distribution arises in many topics, such
as trees, discrete random walk, parking allocation, area under Brownian excursion, hashing tables, (see
[10, 11, 13, 14, 18–21]). Properties of this ‘Airy distribution’ are discussed by Flajolet and Louchard[19]

and Majumdar and Comtet[22].

Although profound and interesting results about the behavior of trees in the standard model were dis-
covered, there are still many problems of practical importance that remain unsolved. Seroussi[5, 6] asked
for the enumeration of binary trees with a given path length, when studying ‘universal types’ of sequences
and distinct parsings of the Lempel-Ziv scheme. Seroussi observed that the number of possible parsings of
sequences of length p corresponds to the cardinality of Tp. Knessl and Szpankowski[23] studied the enu-
meration of binary trees (t = 2) and universal types. Here we generalize their results to t-ary trees. We
shall first enumerate Tp (cf. also [24]), and then compute the limiting distribution of the number of nodes
(phrases in the LZ’78 scheme) when a tree is chosen uniformly from the collection Tp.

The method of types[25, 26], involves partitioning sequences of length p into classes according to type,
or empirical distribution. It is a powerful technical tool in information theory. This method reduces the
computations of rare event probabilities to a combinatorial analysis. Two sequences of the same length p
over a finite alphabet are of the same type if they have the same empirical distribution. For memoryless
sources, the type is measured by the relative frequency of each letter of the alphabet. Seroussi[6] introduced
universal types of individual sequences, and/or sequences generated by a stationary and ergodic source.
Two sequences of the same length are said to be of the same universal type if and only if they produce the
same set of phrases in the incremental parsing of the LZ’78 scheme. It was proved that such sequences
have the same asymptotic empirical distribution[6]. But, every set of phrases defines uniquely a t-ary tree
of path length p (cf. [27]), with the number of phrases corresponding to the number of nodes in the Tp

model. For example, the strings ABCAABBCCBBBAAC and BCABBAACCAACBBB have the same set
of phrases {A, B, C, AA, BB, CC, BBB, AAC} and thus the corresponding ternary trees are the same.
Hence, enumeration of Tp leads to counting universal types, or the different LZ’78 parsings of sequences
of length p.

1.2 Mathematical Approach

We let g(n, p) be the number of t-ary trees with n nodes and path length p. The total number trees with n
nodes is

|T ∗n | =
∞∑

p=0

g(n, p) =
1

(t − 1)n + 1

(
tn
n

)
, (1)

which is called the generalized Catalan number[1]. But the total number of trees of path length p (|Tp| =∑∞
n=0 g(n, p)) is unknown, and this is one of the main topics of this paper.

The generating function

Gn(w) =
∞∑

p=0

wpg(n, p), (2)

satisfies the non-linear recurrence equation

Gn+1(w) = wn
∑

k1+k2+···+kt=n

 t∏
i=1

Gki (w)

 , (3)

and the double transform

G(z,w) =
∞∑

n=0

∞∑
p=0

g(n, p)wpzn =

∞∑
n=0

znGn(w), (4)
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satisfies the functional equation
G(z,w) = 1 + zGt(zw,w). (5)

Note that the coefficient of G(1,w) at wp is
∑∞

n=0 g(n, p), which enumerates the number of t-ary trees with
path length p. The functional equation (5) belongs to the class of quick-sort-like nonlinear functional
equations (cf. [8, 20, 28–31]) that remains not fully analyzed, with some exceptions like the linear probing
algorithm[19, 21].

In this paper we shall analyze g(n, p), Gn(w) and at times G(z,w) asymptotically, for n → ∞. The path
length p is necessarily also large, and we shall study various asymptotic scales, such as p =

(
n
2

)
−O(1), p =

O(n2), p = O(n3/2), p = O(n4/3) and p = n logt n + O(n). Our goal is to obtain a thorough understanding
of the double sequence g(n, p) when n and p are large. Then the distribution of the trees by path length
alone, or number of nodes alone, will follow as special cases. These two “marginal” distributions are quite
different, as the path length will follow an Airy distribution[10, 15], while the number of nodes will follow
a Gaussian distribution, but with the maximal root of the Airy function Ai(·) appearing in the mean and
variance[23].

Seroussi first conjectured and later proved[24] that for t-ary trees, as p→ ∞,

|Tp| = tA(p), A(p) = h(t−1)
tp

ln p
(1 + o(1)), (6)

where h(x) = −x ln x − (1 − x) ln (1 − x). He used information theory and combinatorial arguments. After
reconciling notations, we shall show that our result agrees with (6) and we will refine it considerably.

Our approach to analyzing g(n, p), (3) and (5) is analytic, as opposed to probabilistic or combinatorial.
The non-linear recurrence equation (3) and the non-linear functional equation (5) appear too difficult to
solve in closed form. Such equations cannot be analyzed by standard analytic tools such as transforms.
Thus, we shall use methods of applied mathematics such as the WKB method and asymptotic matching.
We will need to make certain assumptions about the forms of some of the asymptotic expansions, and about
the asymptotic matching between different scales. The WKB method[9, 32] was named after the physicists
Wentzel, Kramers and Brillouin. It assumes that the solution, say G(ξ; n), to a differential equation, func-
tional equation or recurrence has the asymptotic form

G(ξ; n) ∼ enϕ(ξ)
[
S (ξ) +

1
n

S (1)(ξ) +
1
n2 S (2)(ξ) + · · ·

]
, n→ ∞.

The equation satisfied by G(ξ; n) implies that ϕ(ξ) and S (ξ), S (1)(ξ), · · · satisfy certain simpler equa-
tions, that can often be explicitly solved. The asymptotic matching principle (cf. [32]) is a powerful tool
developed over the past 50+ years, and it allows us to relate expansions on different scales. For example,
we shall find that g(n, p) has very different expansions for n → ∞ with p = O(n3/2) and p = O(n4/3).
Asymptotic matching considers the behavior of g(n, p) in an intermediate limit, which lies between the two
scales and where p/n3/2 → 0 but p/n4/3 → ∞.

1.3 Organization

The organization of this paper is as follows. In section 2 we present our main results and briefly discuss
them. In sections 3-7 we analyze Gn(w), and then g(n, p), for n → ∞ and various ranges of the generating
function variable w. In section 3 we consider w > 1 and n → ∞. In section 4 we discuss the limit w ↓ 1
and n → ∞ with w − 1 = O(n−1). We investigate the range with w − 1 = O(n−3/2) in section 5. The scale
w − 1 = O(n−1) with w ↑ 1 is studied in section 6, and in section 7 we consider 0 < w < 1 and n → ∞.
In section 8 we discuss the asymptotic matching range between the limits in section 6 and section 7. This
will be key to obtaining the exponential growth rate of the total number of trees of path length p, and to
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obtaining the mean and variance of the Gaussian distribution of the number of nodes in such trees. Finally,
in section 9 we provide some numerical studies.

2. SUMMARY OF RESULTS FOR GENERAL t-ARY TREES

2.1 Generating Function, Moments and Distribution

Let g(n, p) denote the number of t-ary trees with n nodes and total path length p. The recurrence relation
satisfied by this function is

g(n + 1, p) =
∑

k1+k2+···+kt=n

 ∑
s1+s2+···+st=p−n

 t∏
i=1

g(ki, si)


 , n ≥ 0,

with the boundary conditions
g(0, 0) = 1; g(0, p) = 0, p ≥ 1.

The generating function

Gn(w) =
∞∑

p=0

g(n, p)wp,

thus satisfies

Gn+1(w) = wn
∑

k1+k2+···+kt=n

 t∏
i=1

Gki (w)

 , n ≥ 0, G0(w) = 1. (7)

The double generation function

G(z,w) =
∞∑

n=0

∞∑
p=0

g(n, p)wpzn =

∞∑
n=0

znGn(w), (8)

satisfies the functional equation
G(z,w) = 1 + zGt(zw,w). (9)

We shall mostly analyze (7), and compute approximations to Gn(w) for n → ∞ and various ranges of
w. Then asymptotic results for g(n, p) will follow by evaluating asymptotically the Cauchy integral

g(n, p) =
1

2πi

∫
C

Gn(w)w−p−1dw. (10)

Here C is any closed contour about the origin in the w-plane. When w = 1, we let

a(z) ≡ G(z, 1) =
∞∑

n=0

Gn(1)zn. (11)

It is well known[1] that the total number of t-ary trees with n nodes is

∞∑
p=0

g(n, p) =
1

2πi

∫
C

a(z)
zn+1 dz = Gn(1) =

1
(t − 1)n + 1

(
tn
n

)
, (12)

which is the generalized Catalan number.
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When t = 2, we can easily solve (9) with w = 1, to obtain

a(z) ≡ G(z, 1; t = 2) =
1
2z

(1 −
√

1 − 4z).

When t = 3 with w = 1, we get two different expressions for a(z):

a(z) ≡ G(z, 1; t = 3) =
2
√

3
3
√

z
sin

1
3

arcsin
3
√

3
2
√

z
 ,

or
G(z, 1; t = 3) =

− 1
12z

12
√

3

√
27 − 4

z
− 108

 z2

1/3

−
12
√

3

√
27 − 4

z
− 108

 z2

−1/3

− i
√

3

 1
12z

12
√

3

√
27 − 4

z
− 108

 z2

1/3

−
12
√

3

√
27 − 4

z
− 108

 z2

−1/3 .
When t > 3, it is difficult to obtain even G(z, 1) explicitly. However we can get a series expansion of

a(z), by using the Lagrange inversion theorem, since

z =
G(z, 1) − 1

Gt(z, 1)
=

ā≥1(z)
(ā≥1(z) + 1)t , ā≥1(z) = G(z, 1) − 1 = a(z) − 1.

Thus we obtain the generalized Catalan numbers,

[zn]ā≥1(z) =
1
n

[ā≥1(z)n−1](ā≥1(z) + 1)tn =
1
n

(
tn

n − 1

)
=

1
(t − 1)n + 1

(
tn
n

)
.

Here [zn] is an operator which extracts the coefficient of zn in the expression that follows it.

We expand Gn(w) and G(z,w) about w = 1, and define an, bn, cn as the coefficients in the expansion of
Gn(w),

Gn(w) = an + bn(w − 1) +
cn

2
(w − 1)2 + O((w − 1)3), (13)

and a(z), b(z), c(z) as the coefficients in the expansion of G(z,w),

G(z,w) = a(z) + b(z)(w − 1) +
c(z)
2

(w − 1)2 + O((w − 1)3). (14)

By differentiating (9) with respect to w and setting w = 1 we obtain

b(z) = Gw(z, 1) =
tz2Gt−1(z, 1)Gz(z, 1)

1 − tzGt−1(z, 1)
=

tz2at−1(z)a′(z)
1 − tzat−1(z)

=
tz2a′2(z)

a(z)
, (15)

and correspondingly

bn = G′n(1) =
∞∑

p=1

pg(n, p), n ≥ 0. (16)

From (11) we obtain

a′(z) =
∞∑

n=1

nGn(1)zn−1 =

∞∑
n=0

(n + 1)Gn+1(1)zn. (17)

Also, from the convolution of the generating function, we have

at−1(z) =
∞∑

n=0

1
n + 1

(
nt + t − 2

n

)
zn. (18)
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Using (11), (17) and (18) in (15), we obtain a recurrence relation for the bn

bn+2 = t

 n∑
i=0

(n − i + 1)an−i+1S i +

n+1∑
i=0

S ibn+1−i

, (19)

where S i =
1

i+1

(
it+t−2

i

)
, b0 = 0, b1 = 0, and an = Gn(1) as in (12). The average total path length is thus

bn/an. Similarly we can obtain higher order moments, and in particular we obtain c(z) and cn from

c(z) = Gww(z, 1)

=

[
t(t − 1)zat−2(z)(za′(z) + b(z))2 + tz2at−1(z) [za′′(z) + 2b′(z)]

]
1 − tzat−1(z)

=
a′(z)
a2(z)

[
2t(t − 1)z2b(z)a′(z) + t(t − 1)z3(a′(z))2 + t(t − 1)zb2(z)

+ tz3a(z)a′′(z) + 2tz2a(z)b′(z)
]
,

(20)

and

cn = G′′n (1) =
∞∑

p=2

p(p − 1)g(n, p), n ≥ 0. (21)

By expanding a(z) about z = z0, which is the singularity closest to z = 0, and using (9) with w = 1, we
find that

a(z) = y0 + y1(z0 − z)1/2 + y2(z0 − z) + O((z0 − z)3/2),

z0 =
(t − 1)t−1

tt , y0 =
t

t − 1
, y1 = −

√
2t(t+1)/2

(t − 1)(2+t)/2 , y2 =
2tt(t + 1)
3(t − 1)t+1 .

(22)

The above can be obtained by expanding (18) directly, but it is easier to use the relation a(z) = 1 + zat(z)
and expand it about z = z0. This shows that y0 = 1+ z0yt

0 and then the higher order coefficients in (22), such
as y1 and y2, can be similarly computed. By using (22) in (15) and (20) we then obtain the expansions of
b(z) and c(z) about z = z0 as

b(z) =
b0

z0 − z
+

b1√
z0 − z

+ O(1),

b0 =
t

2(t − 1)2 z0, b1 =
−
√

2t(4t + 1)
6(t − 1)5/2

√
z0,

c(z) =
c0

(z0 − z)5/2 +
c1

(z0 − z)2 + O((z0 − z)−3/2),

c0 =
5
√

2 t3/2

8(t − 1)5/2 z5/2
0 , c1 =

−(17t + 5)t
12(t − 1)3 z2

0,

(23)

where z0 is defined in (22). Then by using singularity analysis we can infer the behavior of the coefficients

7
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in (13) for n→ ∞:

an =
1

zn
0n3/2 [m0 + O(n−1)], m0 =

√
t

√
2π(t − 1)3/2

,

bn =
1
zn

0
[m1 + m̄1

1
√

n
+ O(n−1)],

m1 =
t

2(t − 1)2 , m̄1 =
−(4t + 1)

√
2t

6
√
π(t − 1)5/2

;

cn =
1
zn

0
[m2n3/2 + m̄2n + O(

√
n)],

m2 =
5t
√

t

3
√

2π(t − 1)5/2
, m̄2 =

−(17t + 5)t
12(t − 1)3 .

(24)

It can be easily shown that for each k

G(k+1)
n (1)

G(k)
n (1)

= O(n3/2), n→ ∞. (25)

We define the distribution of the total path length Ln as

Pr{Ln = p} = g(n, p)
∞∑

p=0

g(n, p)

=
g(n, p)

an
. (26)

From (24) it follows that

E[Ln] =
√

tπ
√

2(t − 1)
n3/2 + O(n),

Var[Ln] =
t

t − 1

(
5
3
− π

2

)
n3 + O(n5/2).

(27)

A more complicated problem is to study the distribution of the number of nodes in trees for a given path
length p, i.e., for the ensemble Tp . We define the random variable Np to be the number of nodes in a tree
generated uniformly from Tp. Its distribution is computed from g(n, p) via

Pr{Np = n} = g(n, p)
∞∑

n=0

g(n, p)

. (28)

We will compute Pr{Np = n} asymptotically, and we will also obtain the asymptotic structure of g(n, p)
for various ranges of n and p. The sums in (26) and (28) are finite, because g(n, p) is non-zero only in the
range

n∑
J=2

⌊logt ((t − 1)J)⌋ = pmin(n) ≤ p ≤ pmax(n) =
(
n
2

)
. (29)

Here pmax and pmin are the maximal and minimal total path lengths possible in a tree with n nodes. If we
consider the problem as having p fixed and varying n, then g(n, p) is non-zero when n ∈ [nmin(p), nmax(p)]
where

nmin(p) = min{n :
(
n
2

)
≥ p},

nmax(p) = max{n :
n∑

J=2

⌊logt ((t − 1)J)⌋ ≤ p}.

8
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Asymptotically, for n→ ∞, [pmin, pmax] ∼
[
n logt n, n2

2

]
and, for p→ ∞, [nmin, nmax] ∼

[ √
2p, p

logt p

]
.

We now summarize the main results. The derivations are quite complicated and will be presented in
later sections. Our first main result is for the cardinality of Tp, as given below.

2.2 Result 1: Total Number of Trees

The total number of trees of path length p is, for p→ ∞,

|Tp| =
∞∑

n=0

g(n, p) =
1

(logt p)
√

pπ
exp

 p ln
(

1
z0

)
logt p

(
1 − 3

2
A0

ln(t)
a1/3 (ln p)−2/3 +

M
ln p
+ O((ln p)−4/3)

) , (30)

where
M = (1 + A1 ln(t)) ln ln p − ln ln t + (k2 − A1 ln a) ln t, (31)

A0 =
2
3

(
2t

t − 1

)1/3

|r0|, A1 =
1

ln t
− t + 1

9(t − 1)
,

r0 = max{z : Ai(z) = 0} = −2.3381 · · · , a = ln (t) ln
(

1
z0

)
= ln (t) ln

(
tt

(t − 1)t−1

)
.

(32)

The constant k2 = k2(t) can be obtained by numerically solving a nonlinear integral equation. For example,
when t = 2, k2 ≈ 3.696, and when t = 3, k2 ≈ 2.727. Here Ai(·) is the Airy function, defined as a solution
of f ′′ − z f = 0 that decays as z→ ∞.

The exponential growth rate of the total number of trees of path length p is thus

ln

∑
n

g(n, p)

 ∼ p ln( 1
z0

)

logt p
=

p ln (t) ln
(

tt

(t−1)t−1

)
ln p

= O(
p

ln p
). (33)

This agrees with the recent result of Seroussi[24], after we reconcile our notations. The correction term
to (33) (cf. (30)) involves the maximal root of the Airy function and is of the order O(p(ln p)−5/3). We will
indicate how to obtain further terms in the asymptotic series in (30), which involves powers of (ln p)−1/3,
along with some ln(ln p) factors.

Next we discuss the random variable Np. This gives the probability that a t-ary tree with total path
length p will have n nodes. We define the mean and variance by

N(p) := E[Np] =

∞∑
n=0

ng(n, p)

∞∑
n=0

g(n, p)

, V(p) := Var[Np] =

∞∑
n=0

(n − N(p))2 g(n, p)

∞∑
n=0

g(n, p)

.

2.3 Result 2: Mean and Variance

For the mean and variance of Np we have the expansions

N(p) =
p

ln p
ln t

[
1 − A0 ln t

a1/3(ln p)2/3 +
M − A1 ln(t)

ln p
+ O((ln p)−4/3)

]
, (34)

and

V(p) =
p ln2(t)A0

3(ln p)5/3 ln
(

tt

(t−1)t−1

)
a1/3

1 − 3A1

A0

(
a

ln p

)1/3

+ O((ln p)−2/3)

 . (35)

9



Zhilong ZHANG; Charles Knessl/Progress in Applied Mathematics Vol.1 No.1, 2011

Furthermore, the limiting distribution of Np is Gaussian, i.e.,

Pr{Np = n} = g(n, p)
∞∑

n=0

g(n, p)

∼ 1√
2πV(p)

exp
[
− (n − N(p))2

2V(p)

]
, (36)

for p→ ∞ and n − N(p) = O(V1/2(p)) = O(
√

p(ln(p))−5/6).

The most important scale for studying t-ary trees with a given number n of nodes, is p = O(n3/2). Our
results show that when studying trees with a given path length p the most important range of n is

n =
p

logt p
+ O

(
p(ln p)−5/3)

)
,

or
p = n logt n + O

(
n(ln n)1/3

)
.

This is relatively close to the upper limit nmax(p) (or the lower limit pmin(n)) of the support of g(n, p). Thus
given a large p the number of nodes tends to be close to the maximum number possible, which means that
the tree is close to being balanced.

Results 1 and 2 follow from our detailed analysis of Gn(w) for various ranges of w, and of g(n, p) for
various ranges of n and p. Below we list these, first for Gn(w).

2.4 Result 3: Asymptotics of the Generating Function

Consider t-ary trees with path length equal to p. Let Gn(w) be its generating function, which satisfies
equation (7). Then for n→ ∞ we have the following asymptotic expansions.

(a) Far Right Region : n→ ∞, w > 1

Gn(w) ∼ w(n
2)tn−1G∗(w), (37)

where G∗(w) satisfies

G∗(w) = 1 +
t − 1

2t
1
w
+

t − 1
t

1
w2 + O(w−3), w→ ∞, (38)

G∗(w) ∼ d1
√

w − 1 exp
(

d0

w − 1

)
, w→ 1+, (39)

d0 = (t − 1)
∫ ln( t

t−1 )

0

x
ex − 1

dx = −(t − 1)
∫ ∞

0
ln

(
1 − e−x

t

)
dx,

d1 =
t
√

2
√
π(t − 1)

ed0/2.

(40)

The numerical computation of G∗(w), for 1 < |w| < ∞, is discussed in sections 3 and 9.

(b) Right Region : w = 1 + β/n, 0 < β < ∞

Gn(w) ∼
√
β

n
ĝ(β) exp[nΦ(β)], (41)

where

Φ(β) = ln(t) +
β

2
+ ϕ(β), ϕ(β) ≡ − (t − 1)

β

∫ β

0
ln

(
1 − e−x

t

)
dx,

ĝ(β) =
t
√

2t
√
π(t − 1)

e−β
2/4e−β/2

(
1 − e−β

t − e−β

)3/2

exp
[
1
2
βϕ(β) +

t − 1
2
β ln

(
1 − e−β

t

)]
.

10
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(c) Central Region : w = 1 + a/n3/2, −∞ < a < ∞

Gn(w) =
1

(t − 1)n + 1

(
tn
n

)
+

1
zn

0n3/2

[
C(a) +

1
√

n
C(1)(a) + O(n−1)

]
=

1
zn

0n3/2

[
m0 +C(a) +

1
√

n
C(1)(a) + O(n−1)

]
, m0 =

√
t

√
2π(t − 1)3/2

,

C(a) = (−a)D̄((−a)2/3) = Y3/2D̄(Y), Y = (−a)2/3, a < 0,

D̄(Y) =
1

2πi

∫
Br

esY

 1
t − 1

(
2t

t − 1

)1/2 √
s +

1
t − 1

(
2t

t − 1

)2/3 Ai′
(
( t−1

2t )1/3s
)

Ai
(
( t−1

2t )1/3s
)  ds.

(42)

Here Br is a vertical contour on which R(s) > 0, and
√

s is analytic for R(s) > 0 and positive for s real and
positive. Another expression for the leading term is, for the range of a = −Y3/2 < 0,

Gn(w) ∼ 1
z0n3/2 (−a)

d
dY

 1
2πi

∫
Br

esY 1
s(t − 1)

(
2t

t − 1

)2/3 Ai′
(
( t−1

2t )1/3s
)

Ai
(
( t−1

2t )1/3s
) ds


=

1
z0n3/2

(
2t

(t − 1)2

)
(−a)

∞∑
j=0

exp

−|r j|
(

2t
t − 1

)1/3

Y

 .
(43)

Here z0 = (t − 1)t−1t−t is as in (22) and r j are the roots of Ai(z) = 0, ordered as 0 > r0 > r1 > r2 > · · · . The
correction term C(1)(a) has the following integration representation for a < 0,

C(1)(a) = −aD̄1(Y) =
Y2

2πi

∫
Br

esYE∗(s)ds,

E∗(s) = − (7t + 1)
6(t − 1)2 s +

2t2

(t − 1)3

(
h′(s)
h(s)

)2

− 2t(t + 1)
3(t − 1)3h2(s)

∫ ∞

s

(h′(v))3

h(v)
dv

= − (7t + 1)
6(t − 1)2 s +

t(7t + 1)
3(t − 1)3

(
h′(s)
h(s)

)2

+
2t(t + 1)
3(t − 1)3

(
h′(s)
h(s)

)2

ln[(h(s)]

− (t + 1)
3(t − 1)2 s ln[h(s)] − (t + 1)

3(t − 1)2h2(s)

∫ ∞

s
h2(v) ln [h(v)]dv,

h(s) = Ai
(
(
t − 1

2t
)1/3s

)
.

(44)

For a > 0 (i.e., w > 1) we set a = y3/2 with y > 0, and the leading term is

Gn(w) ∼ 1
zn

0n3/2

{
ta

2(t − 1)2π2

(
t − 1

2t

)1/3 ∫ ∞

0

eωτy

h(ωτ)h(ω2τ)
dτ

− 2ta
(t − 1)2π

∫ ∞

0
ℜ

[
eπi/6

h′(ωτ)
h(ωτ)

eω
2τy

]
dτ

}
,

(45)

where ω = exp(2πi/3).

(d) Left Region : w = 1 − γ/n, 0 < γ < ∞

Gn(w) ∼ 1
zn

0n
exp[v0n1/3γ2/3 + v1γ ln(n)]F0(γ),

F0(γ) =
2t

(t − 1)2 γF1(γ),

v0 =

(
2t

t − 1

)1/3

r0 = −
(

2t
t − 1

)1/3

|r0|, v1 = −
(t + 1)
9(t − 1)

,

(46)
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and F1(·) satisfies the non-linear integral equation

(eγ − 1)
γ

F1(γ) =
∫ 1

0
F1(γx1)F1(γ − γx1)ev1γH(

→
x(2))dx1 +

t∑
i=3

(
t
i

)
1
t

(
2

t − 1

)i−1

γi−2

×
∫ 1

0
...

∫ 1−x1−...−x(i−2)

0
ev1γH(

→
x(i))

 i∏
j=1

F1(γ x j)

 dx(i−1)...dx1,

H(
→
x(i)) =

i∑
j=1

x j ln(x j),
i∑

j=1

x j = 1.

(47)

For example, when t = 3, F1(γ) satisfies

(eγ − 1)
γ

F1(γ) =
∫ 1

0
F1(x1γ)F1((1 − x1)γ)e−2γH(

→
x(2))/9dx1

+
γ

3

∫ 1

0

∫ 1−x1

0
F1(x1γ)F1(x2γ)F1((1 − x1 − x2)γ)e−2γH(

→
x(3))/9dx2dx1.

For γ → 0+, F1 behaves as
F1(γ) = 1 + α0γ ln(γ) + α1γ + o(γ),

where

α0 = −
2(t + 1)
9(t − 1)

, α1 =
(t − 1)2κ

2t
+

(t + 1)
3(t − 1)

(1 − γE),

κ ≡ 2t(t + 1)
3(t − 1)3 ln[h′(s0)] +

t(7t + 1)
3(t − 1)3 −

(t + 1)
3(t − 1)2[h′(s0)]2

∫ ∞

s0

h2(v) ln [h(v)]dv

s0 =

(
2t

t − 1

)1/3

r0, γE = Euler’s constant = 0.5772 · · · .

(48)

For γ → ∞, we obtain

F1(γ) ∼ (t − 1)t1/(t−1)

2
√

2π ln(t)
ek2

√
γ

exp
[(

t + 1
9(t − 1)

− 1
ln(t)

)
γ ln(γ)

]
, (49)

where k2 = k2(t) can be obtained numerically (cf. sections 6 and 9).

(e) Far Left Region : n→ ∞, 0 < w < 1

Gn(w) ∼ en logt(n) ln(w)n
logt (w)

t−1 (2πn)−1/2w
t

(t−1)2
+ 1

(t−1) ln(t) exp
(

B∗1(w, n)
t − 1

)
,

× exp
{(

n +
1

t − 1

) [
g(w) + B∗0(w, n)

]} √
− logt(w) − 2B∗1(w, n) − B∗2(w, n).

(50)

Here the B∗j have the Fourier series

B∗0(w, n) =
∞∑

k=−∞
k,0

gk(w)e2πik logt(n),

B∗1(w, n) =
2πi
ln(t)

∞∑
k=−∞

k gk(w)e2πik logt(n),

B∗2(w, n) =
2πi
ln(t)

∞∑
k=−∞

(
2πi
ln(t)

k2 − k
)

gk(w)e2πik logt(n).

(51)

12



Zhilong ZHANG; Charles Knessl/Progress in Applied Mathematics Vol.1 No.1, 2011

We cannot give the gk(w) explicitly, but can obtain g(w) as w→ 1−, as

g(w) = ln
(

1
z0

)
+

(
2t

t − 1

)1/3

r0(1 − w)2/3

+

[
1

ln(t)
− (t + 1)

9(t − 1)

]
(w − 1) ln(1 − w) + k2(1 − w) + o(1 − w).

(52)

The numerical computation of g(w) is discussed in sections 7 and 9. The sum in B∗0 omits the k = 0
term which would correspond to g(w), and the Fourier coefficients satisfy gk(w) = o(w − 1) as w → 1−.
Numerical studies show that the gk(·) are very small unless w is very small. Thus we can neglect the B∗j for
j = 0, 1, 2, and we use the following approximation

Gn(w) ≈ wn logt(n)e(n+ 1
t−1 )g(w)n

logt (w)
t−1 −

1
2

× w
t

(t−1)2
+ 1

(t−1) ln(t)

√
− logt(w)

2π
,

(53)

but g(w) must still be found numerically for w < 1.

To get the main asymptotic results for the number of trees of a given path length, the important range
is the asymptotic matching region between the left and the far left regions, corresponding w → 1− but
n(1 − w) = γ → +∞. Because we have explicit analytic results for g(w) as w → 1− and gk(w) → 0
for k , 0, we were able to obtain the explicit expressions in Results 1 and 2. The central region, where
w − 1 = O(n−3/2), is the most important for the distribution of the path length in trees with n (→ ∞) nodes,
and the leading term corresponds to an Airy distribution. Note that this Airy distribution persists even in
the limit t → ∞.

Next we give results for g(n, p) for p and n→ ∞, and the main results are summarized as items (A)-(E).
Going from (A) to (E) corresponds to increasing n or decreasing p.

2.5 Result 4: Expansion of the Numbers of Trees by Nodes and Path Length

Let g(n, p) denote the number of t-ary trees built over n nodes with path length p. For n, p → ∞, we have
the following asymptotic approximations.

Region (A): n→ ∞ with p = n(n − 1)/2 − O(1)

n→ ∞, p =
(
n
2

)
− L, L = O(1), L ≥ 0

g(n, p) ∼ tn−1

2πi

∫
C

wL−1G∗(w) dw. (54)

Here C is a closed contour with |w| > 1 and G∗(w) is the same as in (a) of Result 3.

Region (B): n→ ∞ with p = O(n2)

p, n→ ∞ with Λ = p/n2 ∈
(
0,

1
2

)
,

g(n, p) ∼ tn

n2

t
√

t
π(t − 1)

β∗e−β∗/2
(

1 − e−β∗

t − e−β∗

)3/2 [
1 − 2Λ − (t − 1)

teβ∗ − 1

]−1/2

× exp
{

n
[
β∗(1 − 2Λ) − (t − 1) ln

(
1 − e−β∗

t
)]}
,

(55)
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where β∗ ≡ β∗(Λ) is defined implicitly by

β2
∗

(
1
2
− Λ

)
− (t − 1)β∗ ln

(
1 − e−β∗

t

)
= (t − 1)

∫ ln( t
t−1 )

− ln
(
1− e−β∗

t

) x
ex − 1

dx. (56)

Region (C): n→ ∞ with p = O(n3/2)

p, n→ ∞ with Ω = p/n3/2 ∈ (0,∞)

g(n, p) ∼ − 1
zn

0n3

(
1

3Ω

)1/3 ∞∑
j=0

{ 28t( 2t
t−1 )2/3r2

j

9(t − 1)2Ω3 +
32t( 2t

t−1 )5/3r5
j

81(t − 1)2Ω5

 Ai

 ( 2t
t−1 )2/3r2

j

(3Ω)4/3


+

(
1

3Ω

)1/3 20t( 2t
t−1 )1/3r j

3(t − 1)2Ω2 +
32t( 2t

t−1 )4/3r4
j

27(t − 1)2Ω4

 Ai′
 ( 2t

t−1 )2/3r2
j

(3Ω)4/3

 }
× exp

(
−

4t|r j|3

27(t − 1)Ω2

)
.

(57)

Again, here r j < 0 are the negative roots of the Airy function.

Region (D): n→ ∞ with p = O(n4/3)

p, n→ ∞ with Θ = p/n4/3 ∈ (0,∞)

g(n, p) ∼ 1
zn

0n13/6 n−
t+1

9(t−1) γ∗

 64t2
√

2t
81(t − 1)7/2

√
π

 |r0|9/2
Θ5 F1(γ∗) exp

(
− 8tn1/3|r0|3

27(t − 1)Θ2

)
,

γ∗ =
16t

27(t − 1)
|r0|3
Θ3 .

(58)

Here F1(·) is defined as the solution to (47).

Region (E): n→ ∞ with p = n logt n + O(n)

p, n→ ∞ with p = n logt(n) + αn, α = O(1)

g(n, p) ≈ n
logt (w∗)

t−1

2πn
w

t
(t−1)2

+ 1
(t−1) ln(t)

∗√
α + w2

∗g′′(w∗)
e

g(w∗)
t−1

√
− logt w∗

× exp
[
ng(w∗) − nα ln (w∗)

]
.

(59)

Here w∗ = w∗(α) is the solution of the equation w∗g′(w∗) = α.

Dividing (57) by the expansion of an as n → ∞ (cf. (24)) recovers the Airy distribution. In obtain-
ing (59) we used (50) in (10) and neglected the non-constant terms in the Fourier series, which are numeri-
cally small. The integral was then evaluated by the saddle point method (cf. [9]). A refined approximation,
which uses the non-constant terms, can be obtained by using (50) in (10). By using the correction term
C(1)(a) in (42) and (44) in asymptotically inverting (10), we can obtain a correction term of order O(n−1/2)
to the Airy distribution in (57). Again, we only have partial information about the expansion for case (E),
as we know g(w) analytically only as w → 1. Our approximation(s) to g(n, p) in items (A), (D) and (E)
involve the unknown functions G∗(w), F1(γ) and g(w), whose numerical computation we discuss in section
9.

To get more insight into the structure of g(n, p), we give formulas that apply in the asymptotic matching
regions between the various scales. The results are summarized below, with the notation (AB) denoting the
asymptotic matching region between the scales in (A) and (B), and so on. The result (AB) can be obtained
by either expanding (54) as L→ ∞, or by expanding (55) as Λ→

(
1
2

)−
.
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2.6 Result 5: Expansions in the Matching Regions

We summarize the expressions in the asymptotic matching regions.

Matching Region (AB) :

p, n→ ∞; L =
(
n
2

)
− p→ ∞, Λ = p/n2 → 1

2
,

g(n, p) ∼ tn

n2π

√
2d0

1 − 2Λ
1

(t − 1)
exp

n √
2d0(1 − 2Λ) − 1

2

√
2d0

1 − 2Λ

 . (60)

Here d0 is defined as in (40).

Matching Region (BC) :

p, n→ ∞; Λ = p/n2 → 0, Ω = p/n3/2 → ∞,

g(n, p) ∼ 1
zn

0n2π

9
√

3
t
√

(t − 1)
Λ2 exp

(
−3(t − 1)

2t
nΛ2

)
=

1
zn

0n3π

9
√

3
t
√

(t − 1)
Ω2 exp

(
−3(t − 1)

2t
Ω2

)
.

(61)

Matching Region (CD) :

p, n→ ∞, Ω = p/n3/2 → 0, Θ = p/n4/3 → ∞,

g(n, p) ∼ 1
zn

0n13/6

|r0|9/2
Θ5

64t2
√

2t
81(t − 1)7/2

√
π

exp
[
− 8t

27(t − 1)
n1/3 |r0|3
Θ2

]
=

1
zn

0n3

|r0|9/2
Ω5

64t2
√

2t
81(t − 1)7/2

√
π

exp
[
− 8t

27(t − 1)
|r0|3
Ω2

]
.

(62)

Matching Region (DE) :

p, n→ ∞; Θ = p/n4/3 → 0, α = p/n − logt n→ ∞,

g(n, p) ∼ 1
n13/6

|r0|3
Θ7/2

t
1

t−1+2

π
√

ln(t)
8
√

3
27(t − 1)2 exp

[
n ln

(
1
z0

)
− t + 1

9(t − 1)
γ∗ ln(n)

+

(
t + 1

9(t − 1)
− 1

ln(t)

)
γ∗ ln(γ∗) + k2γ∗ −

1
3

(
2t

t − 1
)1/3n1/3|r0|1/3γ2/3

∗

]
.

(63)

Here γ∗ is defined in (58), and we note that

1
3

(
2t

t − 1

)1/3

n1/3|r0|1/3γ2/3
∗ =

8t
27(t − 1)

n1/3 |r0|3
Θ2 .

In section 8 we will show that the asymptotic matching region (DE) leads to the Gaussian distribution
in (36). In each of the above four matching regions, the results are completely explicit functions of n and
p. The results in (BC) and (CD) give, respectively, the right and left tails of the Airy distribution in (57),
which has support in the range 0 < Ω < ∞.
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3. FAR RIGHT REGION

We consider (7) for a fixed w > 1 and n→ ∞. We let

Gn(w) = w(n
2)tn−1Ḡn(w), (64)

and find that (7) becomes

Ḡn+1(w) =
1
tt

∑
i1+i2+···+it=n

w

−
∑

k, l ∈[1,t], k,l

ikil

 t∏
j=1

Ḡi j

=
1
tt

{
tḠn(w)Ḡt−1

0 (w) + t(t − 1)w1−nḠn−1(w)Ḡt−2
0 (w)

+ tw4−2nḠn−2(w)
(t − 1)Ḡ2(w)Ḡt−2

0 (w) +
(
t − 1

2

)
Ḡ2

1(w)Ḡt−3
0 (w)

w

 + · · ·}.
(65)

Using the initial values G0(w) = G1(w) = 1 and G2(w) = tw, (64) leads to

Ḡ0(w) = t, Ḡ1(w) = 1, Ḡ2(w) = 1, (66)

and (65) becomes

Ḡn+1(w) = Ḡn(w) +
t − 1

t
w1−nḠn−1(w) +

t − 1
t

w4−2nḠn−2(w) + O(w−3n), (67)

whose asymptotic solution is
Ḡn(w) = G∗(w) + O(w−n), (68)

for some function G∗(·)
For w→ ∞ and fixed n ≥ 4, it can be established inductively from (7) that

Gn(w) = tn−1w(n
2) +

(t − 1)
2

tn−2w(n
2)−1 + t(t − 1)tn−3w(n

2)−2 + O
(
w(n

2)−3
)
. (69)

Thus by comparing (69) to (64) with (68), we obtain

G∗(w) = 1 +
(t − 1)

2t
1
w
+

(t − 1)
t

1
w2 + O(w−3), w→ ∞. (70)

In section 4 we use an asymptotic matching argument, to show that as w ↓ 1 we have

G∗(w) ∼ d1
√

w − 1 exp
(

d0

w − 1

)
, w→ 1+, (71)

where the constants d0 and d1 are defined in (40). We have not been able to obtain G∗(w) analytically except
for its behaviors for w ↓ 1 and w → ∞. It can be obtained numerically by fixing w > 1 and iterating (65)
until Ḡn(w) reaches some prescribed accuracy, for any given t ≥ 2.

In Table 1, we give G∗(w) for w in range [1.04, 5] for t = 3. The convergence of this procedure becomes
very slow (and G∗(w) becomes very large) when w exceeds 1 just slightly. This is consistent with our
asymptotic analysis, that predicts another scale where n → ∞ with n(w − 1) fixed. The numerical studies
are consistent with our results in (39) and (40). As t increases from 2 to ∞, d0 increases from 0.58224 · · ·
to 1, while d1 decreases from 2.1350 · · · to 0.
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We have assumed that w is real in our analysis thus far. However (64) is valid for complex w with
|w| > 1 by the same arguments. We can use (65) to compute G∗(w) for complex w with |w| > 1. In Figure 1
we plotℜ[G∗(w)] and ℑ[G∗(w)] for 1.4 < |w| < 4 and t = 3.

From (64) and (68) we can infer the behavior of g(n, p) for p close to pmax =
(

n
2

)
. Setting

L =
(
n
2

)
− p = O(1),

we have from (9)

g(n, p) ∼ tn−1

2πi

∫
C

wL−1G∗(w) dw, n→ ∞, (72)

where C is a closed contour with |w| > 1. For L = 0, 1, 2, · · · we can use (70) to calculate (72), and we will
obtain the asymptotic behavior of the integral as L→ ∞ in section 4.

Table 1: Numerical G∗(w) for t = 3

w G∗(w)
5 1.1014

4.5 1.1185
4 1.1424

3.5 1.1776
3 1.2346

2.5 1.3407
2 1.5981

1.8 1.8359
1.6 2.3357
1.4 3.8750
1.2 19.580

1.18 28.392
1.16 45.346
1.14 83.211
1.12 188.26
1.10 596.50
1.08 3419.3
1.06 64599
1.04 2.4500 × 107

4. RIGHT REGION

We consider the limit w ↓ 1 and n→ ∞ with w − 1 = O(n−1). We thus define β by

n(w − 1) = β = O(1), β > 0, (73)

and let
Gn(w) = f (β; n) = f (n(w − 1); n). (74)

With (73) and (74), (7) becomes

f
(
β +
β

n
; n + 1

)
∼ t

(
1 +
β

n

)n n/t∑
m=0

 t−1∏
k=1

Gik (1 +
β

n
)

 f
(
β(1 − m

n
); n − m

)
, (75)
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(a) ℜ[G∗(w)]

−4 −4

−1.0

−2 −2

−0.5

000.0

2 2

0.5

44

1.0

(b) ℑ[G∗(w)]

Figure 2: Plots ofℜ[G∗(w)] and ℑ[G∗(w)] for 1.4 < |w| < 4 and t = 3

where
i1 + i2 + · · · + i(t−1) = m. (76)

We make a few comments about the asymptotic relation in (75). For the scale n→ ∞ with w > 1, which
we analyzed in the previous section, we found that only those terms in the multi-sum in (7) that had one
ik = n and all other ik = 0 were asymptotically important. On the β-scale we shall see the main contribution
to the multi-sum will again come from the t corners of the lattice triangle i1 + i2 + · · · + it = n, but now an
infinite number of terms will contribute from the neighborhood of each corner point. For example for the
corner with i1 = n − O(1), we will sum over the other indices i2, i3, · · · , it through all O(1) values. Using
the symmetry of the multi-sum, we considered only the corner where it = n − m with m = O(1), and then
multiplied by the factor t, which is the first factor in the right side of (75). The exact value of the upper
limit (= n/t) in the m-sum in (75) is asymptotically unimportant, as this limit will be extended to ∞. We
also note that (75) would be exact if we omit the factor t and take the upper limit as m = n. But, our form
of (75) is convenient for isolating the asymptotically dominant terms. For ik = O(1) (for 1 ≤ k ≤ t − 1) we
wrote Gik (w) as itself, while we set it = n − m and used the β-scale form for Git (w) in (74). We can also
view (75) as representing a linearization of the non-linear equation in (7).

For fixed m and w→ 1, the behavior of Gm(w) follows from (13), since

Gm

(
1 +
β

n

)
= am + bm

β

n
+ O(n−2), (77)

where am = Gm(1) and bm is as in (19). We shall make repeated use of the generating functions

a(z) =
∞∑

m=0

amzm, b(z) =

∞∑
m=0

bmzm. (78)

Also, we have (
1 +
β

n

)n

= eβ
[
1 − β

2

2n
+ O(n−2)

]
, n→ ∞. (79)

For fixed β > 0 and n→ ∞, we assume that f (β; n) has an expansion in the WKB form

f (β; n) = enΦ(β)n−1/2
[
g(β) +

1
n

g(1)(β) + O(n−2)
]
. (80)
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The factor n−1/2 is needed for asymptotically matching to another expansion that applies for w − 1 =
O(n−3/2), which is the “central region” discussed in section 5. In section 9 we present some numerical
justification for the ansatz (80). The numerical calculations show that, however, the ratio of the correction
term to the leading term in (80) is bigger than O(n−1), perhaps of the order O(n−1/2). Thus the series in (80)
may be in powers of n−1/2 instead of n−1. However, this does not affect our computation of Φ(β) and g(β).

We substitute (77) and (80) into (75) to find that the left hand side becomes

exp
[
(n + 1)Φ(β +

β

n
)
]

(n + 1)−1/2
[
g(β +

β

n
) +

1
n + 1

g(1)(β +
β

n
) + O(n−2)

]
=enΦ(β)eβΦ

′(β)+Φ(β)n−1/2
[
1 +

1
n

(
βΦ′(β) +

β2

2
Φ′′(β)

)] [
1 − 1

2n

]
×

[
g(β) +

1
n

(
g(1)(β) + βg′(β)

)
+ O(n−2)

]
,

(81)

and the sum in the right side becomes

n/t∑
m=0

t−1∏
k=1

Gik (1 +
β

n
) f

(
β(1 − m

n
); n − m

)

=

n/t∑
m=0

t−1∏
k=1

[
Gik (1) +

β

n
G′ik (1) + O(n−2)

] 1
√

n − m
exp

[
(n − m)Φ

(
β(1 − m

n
)
)]

×
[
g(β) +

1
n

(
g(1)(β) − mβg′(β) + O(n−2)

)]
∼ enΦ(β)n−1/2

∞∑
m=0

e−mβΦ′(β)−mΦ(β)[1 +
β2m2

2n
Φ′′(β)][1 +

βm2

n
Φ′(β)]

×
 ∞∑

m=0

t−1∏
k=1

aik + (t − 1)
β

n

∞∑
m=0

bi(t−1)

t−2∏
k=1

aik + O(n−2)


×

[
g(β) +

1
n

(
g(1)(β) − mβg′(β) + O(n−2)

)]
.

(82)

Here we extended the limit on the m-sum to ∞, as this will only cause an exponentially small error, and
thus not affect the terms in the series in (80). Diving (75) by t(1 + β/n)n and letting n→ ∞ we obtain, after
canceling some common factors, the limiting equation

1
t

e−βeβΦ
′+Φ =

∞∑
m=0

e−m(βΦ′+Φ)ai1 ai2 · · · ai(t−1) . (83)

In view of (76) the right side of (83) is just the (t − 1)st power of the generating function a(z), evaluated at
z = e−βΦ

′−Φ. Thus (83) is a non-linear ODE for the function Φ(β), which is the exponential growth rate of
Gn(w) on the β-scale, in view of (80). We thus have

1
t

e−β = zat−1(z) = 1 − 1
a(z)
, z = e−(βΦ′+Φ),

or
a(z) =

t
t − e−β

. (84)

Using (84) to solve for (βΦ(β))′ = − ln z = ln [teβat−1(z)] leads to

(βΦ(β))′ = ln(tt) + tβ − (t − 1) ln(teβ − 1). (85)
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Integrating equation (85) gives

Φ(β) = ln(tt) +
tβ
2
− (t − 1)
β

∫ β

0
ln(tex − 1)dx

= ln(t) +
β

2
− (t − 1)
β

∫ β

0
ln

(
1 − e−x

t

)
dx

= ln(t) +
β

2
+ ϕ(β),

(86)

where

ϕ(β) ≡ − (t − 1)
β

∫ β

0
ln

(
1 − e−x

t

)
dx

=
(t − 1)
β

∫ ln ( t
t−1 )

− ln (1− e−β
t )

u
eu − 1

du.
(87)

We note that Φ(β) = c/β is a homogeneous solution to (85), however it must be discarded because asymp-
totic matching to the central region (w− 1 = O(n−3/2)) will force Φ(β) to be bounded as β→ 0+. From (86)
we then obtain Φ(0) = t ln(t) − (t − 1) ln(t − 1).

Now we determine g(β) in (80). Using (79), (81) and (82) in (75), at order enΦn−1/2 we obtain the linear
equation

e−β

t
e(βΦ)′

[
βg′ +

(
β2

2
Φ′′ + βΦ′ +

β2

2
− 1

2

)
g
]

= −βg′
∞∑

m=0

me−m(βΦ)′

 ∑
i1+i2+···+i(t−1)=m

 t−1∏
k=1

aik




+ (t − 1)βg
∞∑

m=0

e−m(βΦ)′

 ∑
i1+i2+···+i(t−1)=m

bi(t−1)

 t−2∏
k=1

aik




+ g
∞∑

m=0

e−m(βΦ)′
(

m
2
+
β2m2

2
Φ′′ + βm2Φ′

)  ∑
i1+i2+···+i(t−1)=m

 t−1∏
k=1

aik


 .

(88)

Note that g(1) drops out of (88), in view of (83). Since we determined Φ earlier, (88) is a simple first order
linear ODE for g(β).

To solve (88), we first define

S j(β) =
∞∑

m=0

m jame−m(βΦ)′ , j = 0, 1, 2, (89)

and

T0(β) =
∞∑

m=0

bme−m(βΦ)′ . (90)

Again using

z = e−(βΦ)′ =
e−β(t − e−β)t−1

tt ,

we obtain

S 0(β) =
∞∑

m=0

am zm =
t

t − e−β
. (91)
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To evaluate S 1(β), we differentiate (78) and multiply by z

S 1(β) =
∞∑

m=0

m am zm = z a′(z) =
e−β

(t − e−β)(1 − e−β)
. (92)

Differentiating S 0(β) with respect to β we have

S ′0(β) = −
∞∑

m=0

m (βΦ)′′am e−m(βΦ)′ = −(βΦ)′′S 1(β), (93)

and differentiating again yields

S ′′0 (β) = [(βΦ)′′]2S 2(β) − (βΦ)′′′S 1(β). (94)

Using (91)-(94) and β
2

2 Φ
′′ + βΦ′ = β2 (βΦ)′′ in (88) leads to

e−β

t
e(βΦ)′

[
βg′ +

(
β

2
(βΦ)′ +

β2

2
− 1

2

)
g
]

= (t − 1)βgS t−2
0 T0 +

(t − 1)
2

gS t−2
0 S 1 − (t − 1)βg′S t−2

0 S 1

+
gβ
2

(βΦ)′′
[
(t − 1)S t−2

0 S 2 + (t − 1)(t − 2)S t−3
0 S 2

1

]
.

(95)

We set
g(β) =

√
βĝ(β), (96)

and substitute (96) into (95), with which (95) simplifies to[
S t−1

0 + (t − 1)S 1S t−2
0

] ĝ′(β)
ĝ(β)

=(t − 1)T0S t−2
0 +

(βΦ)′′

2

[
(t − 1)S t−2

0 S 2 + (t − 1)(t − 2)S t−3
0 S 2

1

]
−

S t−1
0

2

[
(βΦ)′′ + β

]
.

(97)

From (91)-(94) we obtain

S 2(β) =
e−β(t − e−2β)

t(1 − e−β)3(t − e−β)
, (98)

and

(βΦ)′′ = −
S ′0(β)
S 1(β)

=
t(1 − e−β)

t − e−β
. (99)

We use the generating function of b(z), which was previously expressed in terms of a(z), to obtain

T0(β) =
e−2β

(t − e−β)(1 − e−β)2 . (100)

Solving (97) for ĝ′(β)/ĝ(β) we obtain

ĝ′(β)
ĝ(β)

=
(2tβeβ + 4teβ − tβe2β − te2β − tβ − 2eβ − 1)

2(teβ − 1)(eβ − 1)

= −1
2
− 3e−β

2(1 − e−β)
− 3e−β

2(t − e−β)
+

tβe−β

2(t − e−β)
− tβ

2(1 − e−β)
.

(101)
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Using MAPLE, (101) integrates to

ĝ(β) = (const.)e−β
2/4e−β/2

(
1 − e−β

t − e−β

)3/2

× exp
{

(t − 1)
2
β ln

(
1 − e−β

t

)
+

1
2

[
polylog

(
2,

e−β

t

)
− t dilog

(
1 − e−β

t

)]
+ M∗

}
,

(102)

where M∗ = (t−1)
2 dilog

(
t−1

t

)
and the dilog(x) and polylog(a, z) functions are defined by

dilog(x) =
∫ x

1

ln(t)
1 − t

dx, polylog(a, z) =
∞∑

n=1

zn

na ,

dilog(z) = polylog(2, 1 − z).

We note that ϕ(β) in (87) may also be written as

β

2
ϕ(β) = M∗ +

1
2

[
polylog

(
2,

e−β

t

)
− t dilog

(
e−β

t

)]
. (103)

With (103), (102) becomes to

ĝ(β) = (const.) e−β
2/4e−β/2

(
1 − e−β

t − e−β

)3/2

exp
[
(t − 1)

2
β ln

(
1 − e−β

t

)
+
β

2
ϕ(β)

]
, (104)

where ϕ(β) is defined in (87).

We assume that (80) asymptotically matches to the expansion for w > 1; we write this condition sym-
bolically as

enΦ(β)

√
β

n
ĝ(β)

∣∣∣∣∣∣
β→∞
∼ w(n

2)tn−1G∗(w)

∣∣∣∣∣∣
w→1
. (105)

The matching condition applies on some intermediate scale where β = n(w − 1) → ∞ but w → 1. For
β→ ∞ we have

Φ(β) = ln(t) +
β

2
− (t − 1)
β

∫ ∞

0
ln

(
1 − e−x

t

)
dx + O

(
e−β

β

)
,

and

βϕ(β)→ −(t − 1)
∫ ∞

0
ln

(
1 − e−x

t

)
dx ≡ d0, (106)

and thus
ĝ(β) ∼ (const.)e−β

2/4e−β/2ed0/2t−3/2, β→ ∞. (107)

For w→ 1, we have

w(n
2) =

(
1 +
β

n

) n(n−1)
2

= enβ/2e−β
2/4e−β/2

[
1 + O

(
β3

n

)]
. (108)

By using (106)-(108) in (105) we find that the matching is possible provided that

G∗(w) ∼ (const.)
√

t

√
w − 1 ed0/2 exp

(
d0

w − 1

)
, w→ 1+. (109)

This shows that G∗(w) has an essential singularity at w = 1. We give numerical support for the behavior
in (109) in section 9. In section 5 we will show that asymptotically matching the β-scale expansion (80), as

22



Zhilong ZHANG; Charles Knessl/Progress in Applied Mathematics Vol.1 No.1, 2011

β→ 0+, to the central region a-scale expansion (which corresponds to n3/2(w−1) = a = O(1)), as a→ +∞,
determines the constant in (104) and (109) as

const. =
t
√

2t
√
π(t − 1)

. (110)

With (109) and (110) we have established (41).

Note that if we used the following ansatz, which is slightly more general than (80),

f (β; n) ∼ enΦ(β)nΨ(β)g(β), (111)

in (75), we would find that Φ(β) is as in (86), and that

Ψ(β) = Ψ0 is a constant,

and then
g(β) = β−Ψ0 ĝ(β),

where ĝ is as in (104). Matching to the a-scale result would show that Ψ0 = − 1
2 and fix the multiplier

constant as in (110). Using (111) and matching to the expansion for w > 1 would lead to

G∗(w) ∼ d1 (w − 1)−Ψ0 exp
(

d0

w − 1

)
, w→ 1.

We use (80) to calculate g(n, p) from the Cauchy integral (10). We write

w−p−1 =

(
1 +
β

n

)−p−1

= exp
[
− p

n
β +

p
2n2 β

2 + O
(

pβ3

n3

)]
. (112)

If we let p, n→ ∞ in such a way that p/n2 is fixed, then enΦ(β) and e−pβ/n grow at the same linear rate in n,
for β = O(1), and (10) will have saddle point(s) where

Φ′(β) =
1
2
+ ϕ′(β) = Λ ≡ p

n2 ,

or
1
2
− Λ − t − 1

β
ln

(
1 − e−β

t

)
=

t − 1
β2

∫ ln( t
t−1 )

− ln
(
1− e−β

t

) x
ex − 1

dx. (113)

Equation (113) is a transcendental equation with a unique real solution β = β∗ = β∗(Λ), that satisfies

β∗ → ∞ as Λ ↑ 1
2
, β∗ → 0+ as Λ→ 0+.

We only need to consider Λ ∈
(
0, 1

2

)
in view of pmax(n) in (29). The steepest descent directions at β = β∗

are arg(β − β∗) = ± π2 , and (112) and (113) lead to

g(n, p) ∼
√
β∗

n2 ĝ(β∗)eΛβ
2
∗/2

1√
2π|ϕ′′(β∗)|

exp
[
n
(
ln t +

β∗
2
+ ϕ(β∗) − Λβ∗

)]
. (114)

From (113) we have

ϕ(β∗) =
(

1
2
− Λ

)
β∗ − (t − 1) ln

(
1 − e−β

t

)
, (115)

and (87) leads to

|ϕ′′(β∗)| =
1
β∗

[
1 − 2Λ − t − 1

teβ∗ − 1

]
. (116)

23



Zhilong ZHANG; Charles Knessl/Progress in Applied Mathematics Vol.1 No.1, 2011

Combining (104) and (110) with (115) and (116), we obtain from (114)

g(n, p) ∼ tn+1

n2

√
t

π(t − 1)
β∗e−β∗/2

(
1 − e−β∗

t − e−β∗

)3/2 [
1 − 2Λ − t − 1

teβ∗ − 1

]−1/2

× exp
{

n
[
β∗(1 − 2Λ) − (t − 1) ln

(
1 − e−β∗

t

)]}
,

(117)

and thus we have established (55).

Now we discuss the asymptotic matching between (72), as L→ ∞, and (117), as Λ ↑ 1
2 . We solve (113)

asymptotically, for β∗ large. We have

ϕ(β) =
d0

β
− t − 1

t
e−β + OR(e−2β), β→ ∞, (118)

with which (113) becomes

Λ − 1
2
= −d0

β2 +

(
t − 1

tβ
+

t − 1
tβ2

)
e−β + OR(e−2β). (119)

Here OR means “roughly” of the order, and ignores factors algebraic in β. From (119) we find that

β∗ ∼
√

2d0

1 − 2Λ

1 − t − 1
2td0

1 +
√

2d0

1 − 2Λ

 exp
(
− 2d0

1 − 2Λ

) , Λ ↑ 1
2
. (120)

Substituting (120) into (117), the right side becomes
√

2d0tn

πn2(1 − 2Λ)(t − 1)

−1
2

√
2d0

1 − 2Λ
+ n

√
2d0
√

1 − 2Λ

 . (121)

We show that (121) matches with (72) as L→ ∞. We argue that there exists a saddle point in the range
w ∼ 1, and expand (72) for L large and estimate G∗(w) by (71), which yields the integral

tn−1

2πi
d1

∫
C

wL−1
√

w − 1 exp
(

d0

w − 1

)
dw. (122)

The integrand in (122) has a saddle point where

d
dw

[
L ln w +

d0

w − 1

]
= 0 ⇒ w = ws ≡ 1 +

d0

2L
+

√
d0

L

√
1 +

d0

4L
,

and then we obtain the following estimate for (122):

tn−1d1√
2π

√
ws − 1

[
2d0w2

s

(ws − 1)3 − L
]−1/2

exp
[
L ln ws +

d0

ws − 1

]
. (123)

We can simplify (123) for L→ ∞ by using

ws = 1 +

√
d0

L
+

d0

2L
+ O(L−3/2), (124)

and note that

L =
(
n
2

)
− p =

n2

2
− p − n

2
= n2

(
1
2
− Λ

)
− n

2
. (125)

Using (124) in (123) leads to

tn

L
d1
√

d0

2t
√
π

exp
[
2
√

Ld0 −
d0

2

]
=

tn

L

√
d0√

2π(t − 1)
exp(2

√
Ld0). (126)

If we use (125) in (126) and expand for n→ ∞,Λ→ 1
2 with n( 1

2 − Λ)→ ∞, we obtain exactly (121). This
confirms the asymptotic matching between the Λ-scale and L-scale results.
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5. CENTRAL REGION

In this section we analyze (7) for w − 1 = O(n−3/2) and then obtain an expansion for g(n, p) that is valid for
p = O(n3/2). We define a by

w − 1 =
a

n3/2 , −∞ < a < ∞. (127)

We will separately consider the cases, a < 0 and a > 0, as needed.

We set

Gn(w) =
1
zn

0

[
anzn

0 +
1

n3/2 C̄n(a)
]

=
1

(t − 1)n + 1

(
nt
n

)
+

1
zn

0n3/2 C̄n(n3/2(w − 1)),
(128)

and (12) leads to
C̄n(0) = 0. (129)

Since an satisfies the recurrence

an+1 =
∑

k1+k2+···+kt=n

 t∏
i=1

aki

 , n ≥ 0, a0 = 1, (130)

we use (128) in (7) and obtain

1
z0(n + 1)3/2 C̄n+1

(1 + 1
n

)3/2

a


=an+1zn

0

[(
1 +

a
n3/2

)n
− 1

]
+ t

(
1 +

a
n3/2

)n n∑
l=0

S l, 1zl
0

k1
3/2 C̄k1

(
k1

3/2a
)

+

(
t
2

) (
1 +

a
n3/2

)n n∑
l=0

S l, 2zl
0

(k1k2)3/2 C̄k1

(
k1

3/2a
)
C̄k2

(
k2

3/2a
)

+ · · ·

+

(
t
t

) (
1 +

a
n3/2

)n ∑
k1+k2+···+kt=n

 t∏
i=1

1
ki

3/2 C̄ki

(
ki

3/2a
) ,

(131)

where

S l, i =
∑

ki+1+···+kt=l

 t∏
j=i+1

ak j

 , l = n − (k1 + · · · + ki).

We write Gn(w) as a Taylor series around w = 1, setting

Gn(w) =
∞∑
j=0

M j, n

j!
(w − 1) j. (132)

From (12) we have M0,n = an, M1,n = bn, and M2,n = cn. Dividing (7) by wn, differentiating N times with
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respect to w, and setting w = 1, we obtain

N∑
i=0

(
N
i

)
(−1)N−i (n + N − i − 1)!

(n − 1)!
Mi,n+1

=
∑

l1+l2+···+lt=n

 ∑
j1+ j2+···+ jt=N

(
N

j1, j2, · · · , jt

) t∏
k=1

M jk ,lk

 .
(133)

For n→ ∞ we write

Mi,n = z−n
0 M̃i,n = z−n

0 n
3
2 (i−1)

[
mi +

1
√

n
m̄i + O(n−1)

]
. (134)

We will obtain asymptotic approximations to C̄n(a), which is equivalent to obtaining expansions for
M j,n for each j. For the leading term, we shall analyze (131). For the correction term, we shall analyze the
functional equation (9) for the double transform.

5.1 Analysis of the Basic Recurrence

We consider (7), which becomes (131) on the a-scale. Using (24) we obtain

an+1zn
0

[(
1 +

a
n3/2

)n
− 1

]
=

m0

z0

a
n2 +

m0

2z0

a2

n5/2 + O(n−3). (135)

We expand C̄n(a) in (128) as

C̄n(a) = C(0)(a) +
1
√

n
C(1)(a) +

1
n

C(2)(a) + O(n−3/2), (136)

and then estimate the various terms in (131). In view of (129) we see that C( j)(0) = 0 for all j ≥ 0.

Using the generating function a(z) defined in (11) and the estimate in (24), we find that

n∑
l=0

alzl
0 =

t
t − 1

− 2 m0√
n
+ O(n−3/2),

n∑
l=0

S l, 1zl
0 =

( t
t − 1

)t−1
− (t − 1)

( t
t − 1

)t−2 2 m0√
n
+ O(n−3/2).

(137)

From (136) and the Euler-MacLaurin formula we have

n∑
l=0

S l, 2zl
0

(k1k2)3/2 C̄k1

(
k1

3/2a
)
C̄k2

(
k2

3/2a
)

∼
( t
t − 1

)t−2 1
n2

∫ 1

0

C(0)(x3/2a)C(0)((1 − x)3/2a)
(x(1 − x))3/2 dx.

(138)

Here we used
n∑

l=0

S l, 2zl
0 ∼

( t
t − 1

)t−2
, n→ ∞.
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We write the first sum in the right side of (131) as

n∑
l=0

S l, 1zl
0

k1
3/2 C̄k1

(
k1

3/2a
)

=

n∑
l=0

S l, 1zl
0

n3/2

(1 − l
n

)−3/2

C(0)

(1 − l
n

)3/2

a

 −C(0)(a)


+

n∑
l=0

S l, 1zl
0

n2

(1 − l
n

)−2

C(1)

(1 − l
n

)3/2

a

 −C(1)(a)


+

n∑
l=0

S l, 1zl
0

[
C(0)(a)

n3/2 +
C(1)(a)

n2

]
+ O(n−5/2).

(139)

From (18) for l→ ∞ we have

S l, 1 =

√
t − 1

t
√

2πz0

1
l3/2
+ O(l−5/2). (140)

Using (140) and the Euler-Maclaurin formula we obtain

n∑
l=0

S l, 1zl
0

n3/2

(1 − l
n

)−3/2

C(0)

(1 − l
n

)3/2

a

 −C(0)(a)


∼
√

t − 1

t
√

2πz0

1
n2

∫ 1

0

1
x3/2

[
C(0)((1 − x)3/2a)

(1 − x)3/2 −C(0)(a)
]

dx + O(n−5/2).

(141)

Thus we have
n∑

l=0

S l, 1zl
0

k1
3/2 C̄k1

(
k1

3/2a
)

=

√
t − 1

t
√

2πz0

1
n2

∫ 1

0

1
x3/2

[
C(0)((1 − x)3/2a)

(1 − x)3/2 −C(0)(a)
]

dx

+

( t
t − 1

)t−1 C(0)(a)
n3/2 +

( t
t − 1

)t−1
[
C(1)(a) − 2(t − 1)2m0

t
C(0)(a)

]
1
n2 + O(n−5/2).

(142)

Multiplying (131) by

w−n =

(
1 +

a
n3/2

)−n
= 1 − a

√
n
+

a2

2n
+ O(n−3/2),

and using (135) leads to

1
z0(n + 1)3/2

(
1 +

a
n3/2

)−n
C̄n+1

(1 + 1
n

)3/2

a

 − an+1zn
0

[
1 −

(
1 +

a
n3/2

)−n]
=

1
z0n3/2

[
1 + O(n−1)

] [
1 − a
√

n
+ O(n−1)

]
×

[
C(0)(a) +

1
√

n
C(1)(a) + O(n−1)

]
− m0

z0n3/2

a
√

n
+ O(n−5/2)

=
1

z0n3/2 C(0)(a) +
1

z0n2

[
C(1)(a) − am0 − aC(0)(a)

]
+ O(n−5/2).

(143)

We note that cubic and higher order terms in C̄ki (a) in the right side of (131) are at most of the order
O(n−5/2). Comparing (143) with the linear and quadratic terms in the right side of (131) in term of C̄ki (a),
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and using (138), (141) and (142), we obtain at O(n−2) the limiting integral equation

−am0 − aC(0)(a) = −2m0(t − 1)2

t
C(0)(a)

+
(t − 1)2

2t

∫ 1

0

C(0)(x3/2a)C(0)((1 − x)3/2a)
(x(1 − x))3/2 dx

+

√
t − 1
√

2tπ

∫ 1

0

1
x3/2

[
C(0)((1 − x)3/2a)

(1 − x)3/2 −C(0)(a)
]

dx.

(144)

Here m0 is the zeroth moment, which we obtained in (24) as

m0 =

√
t

√
2π(t − 1)3/2

.

Thus, the leading term in (136) satisfies the non-linear integral equation (144). Note that at O(n−5/2), we
would ultimately obtain a linear integral equation for the correction term C(1)(a) in (136). However, it is
easier to obtain C(1)(a) by analyzing the double transform equation (9), which we will present in the next
subsection.

We introduce

D(y) =
∞∑
j=0

u j

( j + 1)!
y

3
2 j, y > 0, (145)

and set
u j = m j+1, (146)

and

D̄(Y) =
∞∑
j=1

Y
3
2 ( j−1) m j

j!
(−1) j =

∞∑
i=0

Y
3
2 i ui

(i + 1)!
(−1)i+1, −a = Y3/2 > 0. (147)

We also note that D̄(0) = −u0 = −m1 and

∞∑
k=0

mk

k!
ak = m0 +

∞∑
k=1

mk

k!
(−a)k−1(−a)(−1)k = m0 − aD̄(Y). (148)

To analyze (144) for a < 0 we first note that, in view of (147), C(0) and D̄ are related by

C(0)(a) = (−a)D̄((−a)2/3) = Y3/2D̄(Y). (149)

Then (144) becomes, for Y > 0,

a2D̄(Y) − a m0 =
2 m0(t − 1)2

t
aD̄(Y)

+
(t − 1)2

2t
a2

∫ 1

0
D̄(Y x)D̄(Y − Y x)dx

−
√

t − 1
√

2tπ
a
∫ 1

0

D̄(Y − Y x) − D̄(Y)
x3/2 dx.

(150)

Integrating by parts and using D̄(0) = −m1 we obtain∫ 1

0

D̄(Y − Y x) − D̄(Y)
x3/2 dx = 2D̄(Y) + 2m1 − 2Y

∫ 1

0
x−1/2D̄′(Y − Y x)dx. (151)
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Using (151) in (150), and multiplying by Y/a2 we obtain

YD̄(Y) = −
√

2(t − 1)
√

tπ

∫ Y

0

D̄′(v)
√

Y − v
dv +

(t − 1)2

2t

∫ Y

0
D̄(v)D̄(Y − v)dv. (152)

Similarly, for a > 0 we have
C(0)(a) = aD(a2/3) = y3/2D(y), (153)

and then (144) yields, for y > 0,

−yD(y) = −
√

2(t − 1)
√

tπ

∫ y

0

D′(v)
√

y − v
dv +

(t − 1)2

2t

∫ y

0
D(v)D(y − v)dv. (154)

In view of (132) and (134) we obtain the leading order approximation to Gn(w) (for n → ∞ with a fixed
a > 0) as

Gn(w) ∼
∞∑
j=0

z−n
0 n

3
2 ( j−1) m j

j!
(w − 1) j

=
1

zn
0n3/2

∞∑
j=0

m j

j!
a j

=
1

zn
0n3/2

m0 + a
∞∑
j=0

m j+1

( j + 1)!
a j


=

1
zn

0n3/2

[
m0 + aD(a2/3)

]
, a > 0.

(155)

and for n→ ∞ with a fixed a < 0 we have

Gn(w) ∼ 1
zn

0n3/2

[
m0 − aD̄((−a)2/3)

]
, −a = Y3/2 > 0. (156)

We note that (152) differs from (154) only by the sign on the left-hand side. However (152) is susceptible
to be solved by a Laplace transform while (154) is not.

Setting

D∗(s) = L{D̄(Y)} ≡
∫ ∞

0
e−sY D̄(Y)dY, (157)

where L is the Laplace transform operator, we then have

L{YD̄(Y)} = −D′∗(s), D̄(0) = −m1 = −
t

2(t − 1)2 ,

L
{

D̄′(Y) ∗ 1
√

Y

}
=

[
sD∗(s) − D̄(0)

] √
π

s
.

Here the * denotes convolution. Thus (152) transforms to

−D′∗(s) =
(t − 1)2

2t
D2
∗(s) −

√
2(t − 1)
√

t

√
sD∗(s) −

√
t

√
2(t − 1)3/2

1
√

s
. (158)

This Riccatti equation can be solved by setting

D∗(s) =

√
2t

(t − 1)3/2

√
s + U(s), U(s) =

2t
(t − 1)2

F′(s)
F(s)

, (159)
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which yields the Airy equation

F′′(s) =
(t − 1)s

2t
F(s). (160)

The solution that has acceptable behavior as s→ +∞ is

F(s) = (const.)Ai

( t − 1
2t

)1/3

s

 , (161)

where Ai(·) is the Airy function. Using (161) in (159) and inverting the Laplace transform, we have

D̄(Y) =
1

2πi

∫
Br

esY


√

2t
(t − 1)3/2

√
s +

1
t − 1

(
2t

t − 1

)2/3 Ai′
((

t−1
2t

)1/3
s
)

Ai
((

t−1
2t

)1/3
s
)
 ds, Y = (−a)2/3, (162)

which is valid only for a < 0. Here Br is any vertical contour on whichℜ(s) > r0 = max{z : Ai(z) = 0}. We
can also write (162) as

D̄(Y) =
1

2πi
d

dY


∫

Br
esY


√

2t
(t − 1)3/2

√
s
+

1
s(t − 1)

(
2t

t − 1

)2/3 Ai′
((

t−1
2t

)1/3
s
)

Ai
((

t−1
2t

)1/3
s
)
 ds


=

d
dY


√

2t

(t − 1)3/2
√
πY
+

1
(t − 1)

(
2t

t − 1

)2/3 ∞∑
j=0

1
r j

exp

( 2t
t − 1

)1/3

r jY




=
m0

a
+

2t
(t − 1)2

∞∑
j=0

exp

( 2t
t − 1

)1/3

r jY

 .
(163)

Here 0 > r0 > r1 > · · · and r j are the roots of the Airy function Ai(·). We evaluated the integral by the
residue theorem, closing the Br contour in the left half-plane.

Using (163) in (156) we have the leading order approximation

Gn(w) ∼ 1
zn

0n3/2 (−a)
2t

(t − 1)2

∞∑
j=0

exp

− (
2t

t − 1

)1/3

|r j|Y
 , Y = (−a)2/3 > 0. (164)

We show that (164) is consistent with the fact that Gn(1) = an ∼ m0/(zn
0n3/2) as n → ∞. It is well known

that

Ai(z) ∼ 1
√
π

(−z)−1/4 sin
(

2
3

(−z)3/2 +
π

4

)
, z→ −∞, (165)

and hence we can approximate the roots r j by

|r j| ∼
(

3 jπ
2

)2/3

, j→ ∞. (166)

For Y → 0+ we can estimate the sum in (164) by the Euler-MacLaurin formula, hence

∞∑
j=0

exp

− (
2t

t − 1

)1/3

|r j|Y


∼
∫ ∞

0
exp

− (
2t

t − 1

)1/3 (
3xπ

2

)2/3

Y

 dx

=

√
t − 1

Y3/2π
√

2t

∫ ∞

0
e−u √u du =

−
√

t − 1

2a
√

2tπ
=

(t − 1)2m0

2t(−a)
.
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We next derive an expression valid for a > 0, and show that, for a→ ∞, the a-scale expansion asymptot-
ically matches to the β-scale, for β→ 0+. By using the integral equation (154) and a WKB-type expansion
we can obtain the behavior of the central region approximation as a = y3/2 → +∞. We assume that

D(y) ∼ K(y)eΨ(y), y→ ∞, (167)

where Ψ(y) ≫ log[K(y)]. We also expect that Ψ′(y) > 0 and Ψ′(y)→ ∞ as y→ ∞. Using (167) to estimate
the various terms in (154) we have∫ y

0

1
√

v
D′(y − v)dv ∼

∫ y

0

1
√

v
[K′eΨ + KΨ′eΨ](y − v)dv

∼
∫ y

0
eΨ(y) e−vΨ′(y)

√
v

[(
1 +

1
2

v2Ψ′′(y)
) (
Ψ′(y) − vΨ′′(y)

) (
K(y) − vK′(y)

)
+ K′(y)

]
dv

∼
√
Ψ′(y)πK(y)eΨ(y) + K(y)eΨ(y)

∫ ∞

0

e−vΨ′(y)

√
v

[
K′

K
− vΨ′′ − vΨ′

K′

K
+

1
2

v2Ψ′′Ψ′
]

dv

= K(y)eΨ(y) √π
[√
Ψ′ +

K′

K
1
√
Ψ′
− 1

2(Ψ′)3/2

(
Ψ′′ + Ψ′

K′

K

)
+

3
8
Ψ′′

(Ψ′)3/2

]
.

(168)

We estimate the non-linear term as∫ y

0
D(v)D(y − v)dv = 2

∫ y/2

0
D(v)D(y − v)dv

∼ 2
∫ ∞

0
D(v)eΨ(y)e−vΨ′(y)K(y)dv

∼ 2D(0)K(y)eΨ(y) 1
Ψ′(y)

.

(169)

Recalling that D(0) = u0 = m1 = t/[2(t − 1)2] and using (168) and (169) in (154) we get the leading order
estimate

yK(y)eΨ(y) ∼
√

2(t − 1)
√

t

√
Ψ′(y)K(y)eΨ(y),

and hence
Ψ(y) =

t
6(t − 1)

y3 =
t

6(t − 1)
a2. (170)

At the next order, using (168) and (169) in (154), after some simplification we obtain

0 = −
√

t
√

2(t − 1)
1

2Ψ′
+

K′

K
1
√
Ψ′
− 1

2(Ψ′)3/2

(
Ψ′′ + Ψ′

K′

K

)
+

3
8
Ψ′′

(Ψ′)3/2 , (171)

and thus
K′

K
=

√
t

√
2(t − 1)

1
Ψ′
+

1
4
Ψ′′

Ψ′
=

1
y
+

1
2y
=

3
2y
. (172)

By integrating (172) we have K(y) = (const.′)y3/2 = (const.′)a, so we have formally established that

C̄n(a) ∼ (const.′)a2 exp
[

t
6(t − 1)

a2
]
, a→ +∞, (173)

for some constant const.′. We find that C̄n(a) ∼ aD(a2/3) dominates the first term in the right hand side
of (128) as a→ +∞.

31



Zhilong ZHANG; Charles Knessl/Progress in Applied Mathematics Vol.1 No.1, 2011

The asymptotic matching condition for the a- and β-scales is, in view of (128), (74) and (80),

1
zn

0n3/2 C̄n(a)

∣∣∣∣∣∣
a→∞
∼ enΦ(β)n−1/2g(β)

∣∣∣∣∣∣
β→0+
. (174)

From (86), (96) and (104) we obtain, for β→ 0+,

Φ(β) = ln
(

tt

(t − 1)t−1

)
+

t
6(t − 1)

β2 + O(β3), g(β) ∼ const.
(t − 1)3/2 β

2. (175)

Because β = a/
√

n we find that the matching is indeed possible if

const. = (t − 1)3/2const.′ (176)

where const. is the constant in (104). Our formal study suggests that the non-linear integral equation (158)
may be estimated by a linear one for y → ∞. The non-linear term does not affect the exponential growth
rate Ψ(y) = ty3/[6(t − 1)], however it does affect the algebraic factor K(y) ∝ y3/2.

To determine the constant in (176), we continue (162) into the range a > 0. Since Y = (−a)2/3,
arg(Y) = ± 2π

3 for a > 0. It is convenient to define

h(s) = Ai

( t − 1
2t

)1/3

s

 . (177)

By deforming the Bromwich contour in (162) to a piecewise linear one that goes from s = e−2πi/3∞ to s = 0
and then from s = 0 to s = e2πi/3∞ = ω∞, and parameterizing the two paths, we obtain

D̄(Y) − m0

a
=

2t
(t − 1)2

1
2πi

∫ ∞

0

[
h′(ωτ)
h(ωτ)

ωeωτY − h′(ω2τ)
h(ω2τ)

ω2eω
2τY

]
dτ, ω = e2πi/3. (178)

These integrals converge for Y > 0 sinceℜ(ω), ℜ(ω2) < 0. We can thus write the approximation to Gn(w)
for w = 1 + O(n−3/2) as

Gn(w) ∼ 2t
(t − 1)2zn

0πn
3/2 (−a)

∫ ∞

0
ℜ

[
eπi/6

h′(ωτ)
h(ωτ)

ωeωτY
]

dτ. (179)

To evaluate the integral in (178) we shall use the Wronskian identity (cf. [16, 32])

Ai(ωz)ω2Ai′(ω2z) − ωAi′(ωz)Ai(ω2z) =
i

2π
,

which in term of h(·) leads to

eπi/6
h′(ωτ)
h(ωτ)

+ e−πi/6
h′(ω2τ)
h(ω2τ)

= −
(

t − 1
2t

)1/3 1
2πh(ωτ)h(ω2τ)

. (180)

The integral

I1 =

∫ ∞

0
eπi/6

h′(ωτ)
h(ωτ)

eωτYdτ, Y > 0, (181)

may be extended analytically into the the range arg(Y) ∈
(
− π6 ,

5π
6

)
, while

I2 =

∫ ∞

0
e−πi/6

h′(ω2τ)
h(ω2τ)

eω
2τYdτ, Y > 0, (182)
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may be continued into the range arg(Y) ∈
(
− 5π

6 ,
π
6

)
(in this range arg(ω2Y) ∈

(
− 3π

2 ,−
π
2

)
). Using (180) we

write I1 = I3 + I4 where

I3 = −
(

t − 1
2t

)1/3 1
2π

∫ ∞

0

eωτY

h(ωτ)h(ω2τ)
dτ,

I4 = −
∫ ∞

0
e−πi/6

h′(ω2τ)
h(ω2τ)

eωτYdτ,

(183)

It is well known that (cf. [16]) as z→ ∞

Ai(z) ∼ 1
2
√
π

z−1/4 exp
(
−2

3
z3/2

)
, | arg(z)| < π, (184)

so that both h(ωτ) and h(ω2τ) grow faster than exponentially as τ→ +∞, and hence I3 is an entire function
of Y . The integral I4 in (183) is an analytic function defined in the range arg(Y) ∈

(
− π6 ,

5π
6

)
or arg(Y) ∈(

− 13π
6 ,−

7π
6

)
. We let arg(Y) = − 2π

3 and set

Y = ω2y = ω2a2/3, (185)

with a > 0. Thus we have continued I1 + I2 into the range a > 0, using I1 + I2 = I2 + I3 + I4. This
continues the right side of (178) to a > 0. We next rotate τ in I4 by ω−1 = e−2πi/3 and use (185). After some
simplification, this yields

2t
(t − 1)2π

(−a)
∫ ∞

0
ℜ

[
eπi/6

h′(ωτ)
h(ωτ)

ωeωτY
]

dτ

=
ta

2(t − 1)2π2

(
t − 1

2t

)1/3 ∫ ∞

0

eτy

h(ωτ)h(ω2τ)
dτ

− 2ta
(t − 1)2π

∫ ∞

0
ℜ

[
eπi/6

h′(ωτ)
h(ωτ)

eω
2τy

]
dτ.

(186)

We expand the right hand side of (186) as a = y3/2 → +∞. We approximate the second integral by
Watson’s lemma, and find that it is O(a/y) = O(

√
y). We evaluate the first integral by Laplace’s method.

For τ→ ∞ we use (184) to estimate the integrand, thus

h(ωτ)h(ω2τ) = |h(ωτ)|2 ∼ 1
4π

(
2t

t − 1

)1/6 1
√
τ

exp

4
3

(
t − 1

2t

)1/2

τ3/2

 ,
Here we used the reflection principle, since Ai(z) is real for real z. We thus obtain

t
2(t − 1)2π2

(
t − 1

2t

)1/3 ∫ ∞

0

eτy

h(ωτ)h(ω2τ)
dτ

∼
√

2t
(t − 1)3/2π

∫ ∞

0
eτy
√
τ exp

−4
3

(
t − 1

2t

)1/2

τ3/2

 dτ

∼ t
(t − 1)2π

y
∫ ∞

−∞
exp

 t
6(t − 1)

y3 − t − 1
2ty

(
τ − t

2(t − 1)
y2

)2 dτ

=

√
2t3/2

√
π(t − 1)5/2

y3/2 exp
(

t
6(t − 1)

y3
)
.

(187)

The major contribution to the integral in (187) is from the point τ = t
2(t−1) y

2. Since (187) dominates the
second integral in the right side of (186), we see that the right hand side of (187) gives the expansion of
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D(y) for y→ ∞. This computation confirms the result obtained by the WKB ansatz (167), and determines
the constant as

const. =

√
2t3/2

√
π(t − 1)

. (188)

To calculate the correction term C(1)(a) in (136), we analyze the double transform equation (9) in the
next subsection.

5.2 Double Transform

We re-consider the central region by using the functional equation (9). We introduce the scaling

w = 1 +
a

n3/2 , z = z0

(
1 +
ξ

n

)
, (189)

with

G(z,w) = Ĝ(ξ, a) = Ĝ
((

z
z0
− 1

)
n, (w − 1)n3/2

)
. (190)

From (189) we have
zw
z0
− 1 =

ξ

n
+

(
1 +
ξ

n

) a
n3/2 , (191)

and in terms of (ξ, a), (9) becomes

Ĝ(ξ, a) − 1 = z0

(
1 +
ξ

n

) [
Ĝ

(
ξ +

a
√

n
+

aξ
n3/2 , a

)]t

. (192)

We define G1(ξ, a) by

Ĝ(ξ, a) = a(z0)
[
1 +

1
√

n
G1(ξ, a)

]
=

t
t − 1

[
1 +

1
√

n
G1(ξ, a)

]
, (193)

and then expand G1 = G1(ξ, a; n) for n→ ∞ in the form

G1(ξ, a; n) = G(0)(ξ, a) +
1
√

n
G(1)(ξ, a) +

1
n

G(2)(ξ, a) + O(n−3/2). (194)

Using (193) and (194) in (192) we obtain at the first two orders (O(n−1) and O(n−3/2)) the equations

aG(0)
ξ +

ξ

t
+

t − 1
2

[
G(0)

]2
= 0, (195)

and

aG(1)
ξ + (t − 1)G(0)G(1) + (t − 1)aG(0)G(0)

ξ + ξG
(0) +

a2

2
G(0)
ξξ +

(t − 1)(t − 2)
6

[
G(0)

]3
= 0. (196)

To solve (195) we set

G(0)(ξ, a) =
2a

t − 1
Hξ
H
, (197)

to obtain the Airy equation 2t
t−1 a2Hξξ + ξH = 0 and thus

H(ξ, a) = Ai

( t − 1
2ta2

)1/3

(−ξ)
 , ξ < 0. (198)
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We use (198) in (197), note that

z−n−1dz = z−n−1
0

(
1 +
ξ

n

)−n−1 z0

n
dξ =

1
zn

0n
e−ξ

[
1 + O

(
1
n

)]
dξ, (199)

and invert asymptotically the transform over z in (8). The leading term for Gn(w) thus becomes

Gn(w) =
1

2πi

∫
C

G(z,w)
zn+1 dz

∼ 1
zn

0n
1

2πi

∫
Br−

t
t − 1

e−ξ

1 + 1
√

n
−2a

(t − 1)2/3(2ta2)1/3

Ai′
(
−

(
t−1
2t

)1/3
ξ|a|−2/3

)
Ai

(
−

(
t−1
2t

)1/3
ξ|a|−2/3

)
 dξ.

(200)

Hereℜ(ξ) < 0 on Br−. Setting ξ = −(−a)2/3s = −Y s for a < 0 and Y > 0, and interpreting the O(1) term in
the brackets in (200) as a distribution, via

1
2πi

∫
Br

e−ξdξ =
1

2πi

∫
Br

eY sYds = Yδ(Y) = 0,

(200) becomes

Gn(w) ∼ 1
zn

0n3/2

−(2t)2/3a
2πi(t − 1)5/3

∫
Br

Ai′
((

t−1
2t

)1/3
s
)

Ai
((

t−1
2t

)1/3
s
) eY sds

=
1

zn
0n3/2

−(2t)2/3a
2πi(t − 1)5/3

d
dY


∫

Br

Ai′
((

t−1
2t

)1/3
s
)

Ai
((

t−1
2t

)1/3
s
) eY s

s
ds

 .
(201)

The first integral in (201) must be also interpreted as distribution. We thus have regained the leading term
for the scale w = 1 + O(n−3/2) and w < 1, as (201) is equivalent to (164).

We next obtain the correction term G(1)(ξ, a). Differentiating (195) and rearranging leads to

taG(0)
ξξ + 1 + t(t − 1)G(0)G(0)

ξ = 0. (202)

We rewrite the linear equation (196) as

aG(1)
ξ + (t − 1)G(0)G(1) = −ξG(0) − a2

2
G(0)
ξξ − (t − 1)aG(0)G(0)

ξ −
(t − 1)(t − 2)

6

[
G(0)

]3
. (203)

Using (197) and (202) in (203), and multiplying by H2, we obtain

d
dξ

[
H2G(1)

]
= − (t + 1)

t(t − 1)
ξHHξ +

1
2t

H2 +
2(t + 1)
3(t − 1)2 a2

H3
ξ

H
, (204)

where

H(ξ) = h(s) = Ai

( t − 1
2t

)1/3

s

 , ξ = −(−a)2/3s. (205)

For ξ → −∞, (184) and (205) yield

h(s) = H(ξ) ∼ exp

−2
3

(−ξ)3/2
(

t − 1
2ta2

)1/2 , (206)
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and hence
Hξ
H
∼
√

t − 1
√
−ξ

√
2t(−a)

, ξ → −∞. (207)

Thus the right side of (204) is asymptotic to

(−ξ)3/2H2(ξ)
[
−1

a

(
t + 1

t
√

2t(t − 1)
+

t + 1
3t
√

2t(t − 1)

)]
,

=(−ξ)3/2H2(ξ)
(
−1
a

)
4(t + 1)

3t
√

2t(t − 1)
.

(208)

Due to the algebraic factor (−ξ)3/2 in (208), the solution to (204) would grow like (−ξ)5/2. To avoid this
growth we set

G(1) = a∗ξ + Ĝ(1), (209)

with which (204) becomes

d
dξ

[
H2Ĝ(1)

]
= −a∗(H2 + 2ξHHξ) −

(t + 1)
t(t − 1)

ξHHξ +
1
2t

H2 +
2(t + 1)
3(t − 1)2 a2

H3
ξ

H
. (210)

By choosing a∗ =
−2(t+1)
3t(t−1) we can avoid the growth as ξ → −∞, and then (210) becomes

d
dξ

[
H2Ĝ(1)

]
=

7t + 1
6t(t − 1)

H2 +
(t + 1)

3t(t − 1)
ξHHξ +

2(t + 1)
3(t − 1)2 a2

H3
ξ

H
. (211)

As ξ → −∞, the right side of (211) will be O(H2), rather than O((−ξ)3/2H2).

In term of s, (211) becomes

− 1
Y

d
ds

[
h2(s)Ĝ(1)

]
=

7t + 1
6t(t − 1)

h2(s) +
(t + 1)

3t(t − 1)
sh(s)h′(s) − 2(t + 1)

3(t − 1)2

a2

Y3

(h′(s))3

h(s)
. (212)

To solve (212), we let

Ĝ(1) =
t − 1

t
YE∗(s), (213)

with which (212) becomes

d
ds

[
h2(s)E∗(s)

]
= − (7t + 1)

6(t − 1)2 h2(s) − (t + 1)
3(t − 1)2 sh(s)h′(s) +

2t(t + 1)
3(t − 1)3

(h′(s))3

h(s)
. (214)

Before solving (214), we first establish a relationship between C(1) and G(1) in (194). From (128)
and (136) we have

Gn(w) −Gn(1) ∼ 1
zn

0n3/2

[
C(0)(a) +

1
√

n
C(1)(a) + O(n−1)

]
, (215)

and inverting (8) using (194), (209) and (213) leads to

Gn(w) −Gn(1) =
1

2πi

∫
C

G(z,w) −G(z, 1)
zn+1 dz

∼ 1
zn

0n
1

2πi

∫
Br−

( t
t − 1

)
e−ξ

[
1
√

n
G(0)(ξ, a) +

1
n

Ĝ(1)(ξ, a) + O(n−3/2)
]

dξ

=
1

zn
0n3/2

1
2πi

∫
Br−

eY s
[( t

t − 1

)
YG(0)(−Y s, a) +

1
√

n
Y2E∗(s) + O(n−1)

]
ds.

(216)
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Comparing (215) with (216), we conclude that

C(1)(a) =
1

2πi

∫
Br−

eY sY2E∗(s)ds. (217)

We define D̄1(Y) from
C(1)(a) = (−a)D̄1((−a)2/3) = Y3/2D̄1(Y), a < 0, (218)

and note that (132), (134) and (136) give

D̄1(Y) =
∞∑

L=1

m̄L

L!
Y

3
2 (L−1)(−1)L, (219)

where m̄L is defined in (134). Using (217) and (218), we can express E∗(s) in term of D̄1(Y) as

E∗(s) =
∫ ∞

0
e−sY D̄1(Y)

√
Y

dY. (220)

We return to (214), and write its general solution as

E∗(s) =
c∗

h2(s)
+

1
h2(s)

∫ ∞

s

[
(7t + 1)
6(t − 1)2 h2(v) +

(t + 1)
3(t − 1)2 sh(v)h′(v) − 2t(t + 1)

3(t − 1)3

(h′(v))3

h(v)

]
dv. (221)

However, h(s) decays faster than exponentially as s→ ∞ so that h−2(s) has unacceptable growth. Thus we
must set c∗ = 0 in order for E∗(s) to be a proper Laplace transform. Using the fact that h(s) satisfies (160)
and integrating by parts yields∫ s

vh(v)h′(v)dv =
2t

t − 1

∫ s

h′(v)h′′(v)dv =
t

t − 1
(h′(s))2,∫ s

h2(v)dv = sh2(s) − 2
∫ s

vh(v)h′(v)dv = sh2(s) − t
t − 1

(h′(s))2,

and thus (221) simplifies to

E∗(s) = − (7t + 1)
6(t − 1)2 s +

2t2

(t − 1)3

(
h′(s)
h(s)

)2

− 2t(t + 1)
3(t − 1)3h2(s)

∫ ∞

s

(h′(v))3

h(v)
dv. (222)

We have thus obtained (44) and hence (42), since for a < 0

Gn(w) =
∞∑
j=0

M j,n
(w − 1) j

j!

=
1

zn
0n3/2

 ∞∑
j=0

m j
a j

j!
+

1
√

n

∞∑
j=0

m̄ j
a j

j!
+ O(n−1)


=

1
zn

0n3/2

m0 +

∞∑
j=1

m j
a j

j!
+

1
√

n

∞∑
j=1

m̄ j
a j

j!
+ O(n−1)


=

1
zn

0n3/2

[ √
t

√
2π(t − 1)3/2

− aD̄((−a)2/3) +
1
√

n
(−a)D̄1((−a)2/3) + O(n−1)

]
=

1
zn

0n3/2

[ √
t

√
2π(t − 1)3/2

+ Y3/2D̄(Y) +
1
√

n
Y3/2D̄1(Y) + O(n−1)

]
.

(223)
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To asymptotically match the a-scale result to that valid for w < 1 and w − 1 = O(n−1), we shall
need the behavior of D̄1(Y) as Y = (−a)2/3 → ∞. This will be determined by the singularity of E∗(s)
with the largest real part. The Laplace transform of the leading term D̄(Y) has simple poles at ( 2t

t−1 )1/3r j

where r j are the negative roots of the Airy function and the pole at ( 2t
t−1 )1/3r0 determines the asymptotic

behavior as Y → ∞ (a → −∞). The dominant singularity of E∗(s) is also at ( 2t
t−1 )1/3r0. However, (222)

has a more complicated structure, as there is a double pole combined with a logarithmic branch point at
s = s0 ≡ ( 2t

t−1 )1/3r0.

We expand (222) near the dominant singularity at s0. Integrating by parts we have∫ ∞

s

(h′(v))3

h(v)
dv =

∫ ∞

s
(h′(v))2d[ln(h(v))]

= −(h′(s))2[ln(h(s))] −
∫ ∞

s
2h′′(v)h′(v)[ln(h(v))]dv

= −(h′(s))2[ln(h(s))] − t
t − 1

∫ ∞

s
vh′(v)h(v)[ln(h(v))]dv,

(224)

and ∫ ∞

s
vh′(v)h(v)[ln(h(v))]dv =

∫ ∞

s
vh(v)[ln(h(v))]dh(v)

= −sh2(s) ln[h(s)] −
∫ ∞

s

{
h2(v) ln[h(v)] + vh(v)h′(v) ln[h(v)] + vh(v)h′(v)

}
dv,

(225)

which may be re-arranged to

2
∫ ∞

s
vh′(v)h(v) ln[h(v)]dv = −sh2(s) ln[h(s)] −

∫ ∞

s
h2(v) ln[h(v)]dv +

2t
t − 1

(h′(s))2. (226)

Using (224)-(226) in (222) we obtain the following alternative form for E∗(s)

E∗(s) = − (7t + 1)
6(t − 1)2 s +

t(7t + 1)
3(t − 1)3

(
h′(s)
h(s)

)2

+
2t(t + 1)
3(t − 1)3

(
h′(s)
h(s)

)2

ln[(h(s)]

− (t + 1)
3(t − 1)2 s ln[h(s)] − (t + 1)

3(t − 1)2h2(s)

∫ ∞

s
h2(v) ln [h(v)]dv,

(227)

which is convenient for studying the limit s → s0. Next we let τ = s − s0 and expand (227) about τ = 0.
Noting that h(s0) = h′′(s0) = 0 and∫ ∞

s
h2(v)[ln h(v)]dv =

∫ ∞

s0

h2(v)[ln h(v)]dv −
∫ s

s0

h2(v)[ln h(v)]dv

=

∫ ∞

s0

h2(v)[ln h(v)]dv + O(τ3 ln τ),
(228)

(227) leads to

E∗(s) =
2t(t + 1)

3(t − 1)3τ2 ln[h′(s0)τ] +
t(7t + 1)

3(t − 1)3τ2

− (t + 1)
3(t − 1)2[h′(s0)]2τ2

∫ ∞

s0

h2(v) ln [h(v)]dv + O(ln τ), τ→ 0.
(229)

Here

h′(s0) =
(

t − 1
2t

)1/3

Ai′
( t − 1

2t

)1/3

s0

 = (
t − 1

2t

)1/3

Ai′(r0). (230)
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We define κ = κ(t) by

κ ≡ 2t(t + 1)
3(t − 1)3 ln[h′(s0)] +

t(7t + 1)
3(t − 1)3 −

(t + 1)
3(t − 1)2[h′(s0)]2

∫ ∞

s0

h2(v) ln [h(v)]dv, (231)

and thus we obtain

D̄1(Y) =

√
Y

2πi

∫
Br

esYE∗(s)ds

=
√

Y exp

−|r0|
(

2t
t − 1

)1/3

Y

 1
2πi

∫
Br+

esY
[

2t(t + 1)
3(t − 1)3

ln τ
τ2 +

κ

τ2 + O(ln τ)
]

dτ,
(232)

whereℜ(τ) > 0 on Br+. Using esY = es0YeτY and explicitly evaluating the integral in (232) we have

D̄1(Y) = Y3/2 exp

−|r0|
(

2t
t − 1

)1/3

Y


×

[
− 2t(t + 1)

3(t − 1)3 ln Y + κ +
2t(t + 1)
3(t − 1)3 (1 − γE) + O

(
ln Y
Y

)]
, Y → ∞,

(233)

where γE is the Euler constant.

Combining (233) and (164) we have shown that for Y → ∞ the two term approximation on the a-scale
behaves as

Gn(w) =
1

zn
0n3/2

[ √
t

√
2π(t − 1)3/2

+ Y3/2D̄(Y) +
1
√

n
Y3/2D̄1(Y) + O(n−1)

]
∼ 1

zn
0n3/2 exp

−|r0|
(

2t
t − 1

)1/3

(−a)2/3


×

{
2t

(t − 1)2 (−a) +
a2

√
n

[
− 4t(t + 1)

9(t − 1)3 ln (−a) + κ +
2t(t + 1)
3(t − 1)3 (1 − γE)

]}
.

(234)

This expression applies in the limit w→ 1 but a = n3/2(w − 1)→ −∞ and will be used in section 6.

5.3 Transform Inversion

We now invert the transform over w using (10) and obtain an approximation to g(n, p). We assume that

Ω ≡ pn−3/2 = O(1), 0 < Ω < ∞, (235)

and with (127) we obtain

w−p−1dw =
(
1 +

a
n3/2

)−1−Ωn3/2

n−3/2 da =
e−aΩ

n3/2 [1 + O(n−3/2)]da. (236)

Thus the scale w − 1 = O(n−3/2) in the transform space translates to (235) in the (n, p) space, and (236)
and (234) lead to

g(n, p) =
1

zn
0n3

1
2πi

∫
Bra

[
m0 +C(0)(a) +

1
√

n
C(1)(a) + O(n−1)

]
e−aΩda

∼ 1
zn

0n3

1
2πi

∫
Bra

[
m0 − aD̄(Y)

]
e−aΩda

=
1

zn
0n3 (−a)

1
(2πi)2

∫
Bra

[
d

dY

∫
Br

2t
(t − 1)2

h′(s)
sh(s)

ds
]

e−aΩda.

(237)
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Here we takeℜ(a) < 0 on the vertical contour Bra, since we used (163) for D̄(Y).

We note that as −a goes from −∞ i to +∞ i, Y = (−a)2/3 goes from ∞e−πi/3 to ∞eπi/3. To evaluate the
double integral in (237), we let

Y = Z2,

and the contour Bra is mapped to C∗, which goes from∞e−πi/6 to∞eπi/6 in the Z-plane. Thus (237) becomes

g(n, p) ∼ 1
zn

0n3

1
(2πi)2

∫
C∗

eΩZ3 3t
(t − 1)2 Z4

[
d

dZ

∫
Br

h′(s)
sh(s)

esZ2
ds

]
dZ

=
1

zn
0n3

−1
(2πi)2

∫ ∞ω

∞ω2
e−ΩZ3 6t

(t − 1)2 Z5
[∫

Br

h′(s)
h(s)

esZ2
ds

]
dZ,

(238)

where we changed Z to −Z and used ω = e2πi/3 in the last integral. By integrating by parts and after
re-arrangement, we obtain

g(n, p) ∼ 1
zn

0n3

−1
(2πi)2

∫ ∞ω

∞ω2

∫
Br

e−ΩZ3
esZ2 h′(s)

h(s)

[
20t

3(t − 1)2

Zs
Ω2 +

8t
9(t − 1)2

s2(1 + 2sZ2)
Ω3

]
dsdZ. (239)

Furthermore we set
Z =

s
3Ω
+W, W =

ξ

(3Ω)1/3 , (240)

and recall the integral representation of the Airy function

Ai(U) =
1

2πi

∫ ∞ω

∞ω2
eξUe−ξ

3/3dξ. (241)

Differentiating (241) with respect to U corresponds to multiplying the integrand by ξ. Thus (239) yields

g(n, p) ∼ − 1
zn

0n3

1
2πi

∫
Br

h′(s)
h(s)

exp
[

2s3

27Ω2

]
1

(3Ω)1/3

{
20t

3(t − 1)2

s
Ω2(3Ω)1/3 Ai′(U(s))

+

[
20t

3(t − 1)23Ω3 +
8t

9(t − 1)2Ω3

]
s2Ai(U(s)) +

16t
9(t − 1)2

s3

Ω3(3Ω)2/3 Ai′′(U(s))

+
32t

9(t − 1)2

s4

Ω4(3Ω)1/3 Ai′(U(s)) +
16t

81(t − 1)2

s5

Ω5 Ai(U(s))
}

ds,

(242)

where we evaluated the integral over Z and set

U(s) =
s2

(3Ω)4/3 . (243)

Using the fact that Ai′′(U(s)) = U(s)Ai(U(s)) to simplify (242) and noting that integrand has singularities at
s = ( 2t

t−1 )1/3r j, we evaluate the integral using the residue theorem and thus establish (57). It is also possible
to get an O(n−1/2) correction to (242) or (57), by using (222) and (232) to compute C(1)(a) in (237), and
then evaluate the integral in a manner similar to that above.

Finally we discuss the asymptotic behavior of the right side of (57) (or (242)) for Ω → 0 and Ω → ∞.
For Ω→ 0 the dominant term in the sum in (57) is j = 0, which is exponentially larger than the other terms,
and thus we obtain

1
zn

0n3

1
(3Ω)1/3 exp

(
−4t|r0|3

27(t − 1)Ω2

)
64t

81(t − 1)2

(
2t

t − 1

)5/3 |r0|5
Ω5 Ai

( 2t
t − 1

)2/3 r2
0

(3Ω)4/3


∼ 1

zn
0n3 exp

(
−8t|r0|3

27(t − 1)Ω2

)
64
√

2t5/2

81(t − 1)7/2

|r0|9/2√
πΩ5
.

(244)
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This gives an approximation to g(n, p) that applies for n4/3 ≪ p ≪ n3/2. In (244) we used the asymptotic
expansion (184) of the Airy function. Note that (244) arises from two parts of the j = 0 term(s) in (57), the
part proportional to r5

0Ai(·) and that proportional to r4
0Ai′(·). In section 6 we will use (244) to discuss the

asymptotic matching between the scales p = O(n3/2) and p = O(n4/3). The limit Ω→ ∞ corresponds to the
left tail of the Airy distribution, and corresponds to the expression in (62), which applies for n3/2 ≪ p ≪ n2.

The limit Ω → ∞ is difficult to obtain from the sum in (57), due to a lot of cancelation. However, we
have previously established the asymptotic matching between the expansions for w = 1+O(n−3/2) (a−scale)
and w = 1 +O(n−1) (β − scale). This implies the matching in (n, p) space of the expansions for p = O(n3/2)
(Ω − scale), (where (242) applies), and for p = O(n2) (Λ − scale). Thus the behavior of (242) or (57) as
Ω → ∞ is the same as that of (117) as Λ = p/n2 = Ω/

√
n → 0. The latter is easily obtained from (113)

and (117), as we show below.

As Λ→ 0, we have β∗ → 0 and from (87) we get

ϕ(β) = −(t − 1) ln
t − 1

t
− β

2
+

tβ2

6(t − 1)
+ O(β3), β→ 0. (245)

From (113) we have

β∗ = β∗(Λ) ∼ 3(t − 1)
t
Λ, Λ→ 0, (246)

so that
1 − 2Λ − t − 1

teβ∗ − 1
∼ Λ, (247)

and

β∗(1 − 2Λ) − (t − 1) ln
(
1 − e−β∗

t

)
∼ (t − 1) ln

( t
t − 1

)
− 3(t − 1)

2t
Λ2. (248)

Using (246)-(248) in the right side of (117) yields

tn+1

n2π

√
t

(t − 1)3

β5/2
∗√
Λ

exp
{

n
[
(t − 1) ln

( t
t − 1

)
− 3(t − 1)

2t
Λ2

]}
∼ tn

n2π

35/2

t
√

t − 1
Λ2

( t
t − 1

)n(t−1)
exp

(
−3(t − 1)

2t
nΛ2

)
=

1
zn

0n3π

9
√

3

t
√

t − 1
Ω2 exp

(
−3(t − 1)

2t
Ω2

)
, Ω =

p
n3/2 .

(249)

This is the asymptotic behavior of (242) or (57) as Ω → ∞. We have completed the analysis of the scales
w − 1 = O(n−3/2) and p = O(n3/2).

6. LEFT REGION

We study the scale w − 1 = O(n−1) with w < 1 , defining γ by

w = 1 − γ
n
, γ > 0. (250)

Furthermore, we set

Gn(w) =
1

zn
0n

ev0n1/3γ2/3
ev1γ ln nF(γ; n). (251)

Here v0 and v1 are constants that will be determined soon. The form in (251) is suggested by the behavior
of the a-scale result as a→ −∞ (cf. (134) with −a = γ

√
n).
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6.1 Analysis of the Basic Recurrence

Using (251) in (7) yields

1
zn+1

0 (n + 1)
exp

v0(n + 1)1/3
[(

1 +
1
n

)
γ

]2/3

+ v1γ ln (n + 1)

 F
(
γ

(
1 +

1
n

)
; n + 1

)
=

(
t
1

) (
1 − γ

n

)n ∑
(i1,i2,··· ,it)∈S1

1

zi1
0 i1

exp
(
v0i1/31

(
γ

i1
n

)2/3

+ v1γ ln i1

)
F

( i1
n
γ; i1

)

×
 t∏

k=2

Gik

(
1 − γ

n

)
+

(
t
2

) (
1 − γ

n

)n ∑
(i1,i2,··· ,it)∈S2

2∏
j=1

1

zi j

0 i j

exp

v0i1/3j

(
γ

i j

n

)2/3

+ v1γ ln i j

F
(

i j

n
γ; i j

)

×
 t∏

k=3

Gik

(
1 − γ

n

)
+ · · ·

+

(
t

t − 1

) (
1 − γ

n

)n ∑
(i1,i2,··· ,it)∈St−1

 t−1∏
k=1

1

zik
0 ik

exp
(
v0i1/3k

(
γ

ik
n

)2/3

+ v1γ ln ik

)
F

( ik
n
γ; ik

)
×Git

(
1 − γ

n

)
+

(
1 − γ

n

)n ∑
(i1,i2,··· ,it)∈St

 t∏
k=1

1

zik
0 ik

exp
(
v0i1/3k

(
γ

ik
n

)2/3

+ v1γ ln ik

)
F

( ik
n
γ; ik

) ,

(252)

where
SJ = {i1, i2, · · · , iJ = O(n); iJ+1, · · · , it = O(1)} , J = 1, 2, · · · , t ;

and
S1 ∪ S2 ∪ · · · ∪ St = {(i1, i2, · · · , it) : i1 + i2 + · · · + it = n} .

We need to say a few words about the form of (252). Note that in (252) we wrote the product Gi1Gi2 · · ·Git
using the form (251) for the first few ik (with 1 ≤ k ≤ J) and used Gik (w) = Gik (1 − γ/n) for the remaining
ik (with J + 1 ≤ k ≤ t). We proceed to give a simple geometric interpretation of (252). For the binary
case t = 2 we found in [23] that in the single sum over i1 + i2 = n in (7), two ranges are equally important
asymptotically. These correspond to (1) i1 = O(1) and i2 = n − O(1) or i2 = O(1) and i1 = n − O(1), and
(2) i1, i2 both O(n). The first range corresponds to the endpoints of the line segment i1 + i2 = n (i1, i2 ≥ 0)
and the second range to the interior of the segment. In the first range we can use (252) to approximate one
of the two factors in Gi1 (w)Gi2 (w) (that which has ik = O(n)) but not the other. If both ik = O(n) then we
use (252) for both factors. Now consider t = 3 where the double sum in (252) corresponds to summing
over points in the lattice triangle i1 + i2 + i3 = n. We view this triangle as having corners at (n, 0, 0),
(0, n, 0), and (0, 0, n), three edges where, say, i3 = 0 and i1 + i2 = n, and an interior where i1, i2, i3 are all
O(n). Near the corner (n, 0, 0), the first factor in Gi1 (w)Gi2 (w)Gi3 (w) may be approximated by using (252),
but not the other two. By symmetry the analysis will be the same at all 3 corners. Similarly, near an
edge two of the three factors can be approximated using (252). In the interior we use (252) for all three
factors. Then we find that these three geometric regions all contribute equally as n → ∞. The corner
contributions will be proportional to F(γ), the edge contributions will involve a convolution integral of F
with itself, and the interior contribution will be a double convolution integral, with the integrand involving
F(γx)F(γy)F(γ(1 − x − y)). The latter will correspond to a cubic non-linearity in the limiting integral
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equation. The equation (252) corresponds to generalizing the above argument to arbitrary t, where we view
the (t−1) fold sum in (7) (where i1+ i2+ · · ·+ it = n) as being over a t−1 dimensional lattice hyper-triangle.
This hyper-triangle has t corners,

(
t
2

)
edges, etc., which correspond to the binomial coefficients in (252). We

will now show that the corners, edges, · · · , interior all contribute equally for n→ ∞, and this will lead to a
limiting non-linear integral equation for F(γ; n). Note that the last sum in (252) corresponds to the interior
of the hyper-triangle, and the terms proportional to

(
t
J

)
will have i1, i2, · · · , iJ = O(n) and iJ+1, · · · , it = O(1).

Later, in subsection 6.2, we will analyze the scale (250) using the double transform equation (9), and
this will involve less combinatorial analysis.

We note that
t∑

k=1

i1/3k

( ik
n

)2/3

= n1/3,

and define H(·) by
t∑

k=1

ik
n

ln (ik) = ln n + H(x⃗(t)),

where

H(x⃗(m)) =
m∑

j=1

x j ln(x j),
m∑

j=1

x j = 1. (253)

We assume that

F(γ; n)→ F0(γ), n→ ∞. (254)

Then the first sum in (252) is asymptotic to(
t
1

) (
1 − γ

n

)n ∑
(i1,i2,··· ,it)∈S1

1

zi1
0 i1

exp
(
v0i1/31

(
γ

i1
n

)2/3

+ v1γ ln i1

)
F

( i1
n
γ; i1

)

×
 t∏

k=2

Gik

(
1 − γ

n

)
∼ 1

zn
0n

exp (v0n1/3γ2/3)nv1γF0(γ)
∞∑

i2=0

· · ·
∞∑

it=0

t∏
k=2

[
Gik (1)zik

0

]
=

1
zn

0n
exp (v0n1/3γ2/3)nv1γ

( t
t − 1

)t−1
F0(γ).

(255)

We estimate the second sum in (252) by the Euler-Maclaurin formula to obtain for t = 2

1
zn

0n
exp (v0n1/3γ2/3)nv1γ

∫ 1

0
ev1γH(x⃗(2)) F0(γx1)F0(γ − γx1)

x1(1 − x1)
dx1,

and for t ≥ 3

1
zn

0n
exp (v0n1/3γ2/3)nv1γ

∫ 1

0
...

∫ 1−x1−...−x(t−2)

0
ev1γH(x⃗(t))

 t∏
j=1

F0(γ x j)
x j

 dx(t−1)...dx1. (256)

The other sums in (252) can be similarly approximated by the Euler-Maclaurin formula. Using (255)
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and (256) in (252) we get the limiting equation

1
z0

(eγ − 1)F0(γ) =
(
t
2

) ( t
t − 1

)t−2 ∫ 1

0
ev1γH(x⃗(2)) F0(γx1)F0(γ − γx1)

x1(1 − x1)
dx1

+

t∑
i=3

(
t
i

) ( t
t − 1

)t−i

×
∫ 1

0
...

∫ 1−x1−...−x(i−2)

0
ev1γH(x⃗(i))

 i∏
j=1

F0(γ x j)
x j

 dx(i−1)...dx1.

(257)

Here H(x⃗(·)) is as in (253), we used (1 − γn )n ∼ e−γ, and

∑
SJ

t∏
k=J+1

[
Gik (1 −

γ

n
)zik

0

]
∼

∞∑
iJ+1=0

· · ·
∞∑

it=0

t∏
k=J+1

[
Gik (1)zik

0

]
=

( t
t − 1

)t−J
.

Equation (257) is a non-linear integral equation that is somewhat similar to one that arises in the study
of the limiting distribution of the number of comparisons in the Quicksort algorithm[28–31]. Note that for
the integral to converge, we must have F0(0) = 0, but this follows also from asymptotic matching to the
a-scale. Setting

F0(γ) =
2t

(t − 1)2 γF1(γ), (258)

(257) simplifies to

eγ − 1
γ

F1(γ) =
∫ 1

0
F1(γx1)F1(γ − γx1)ev1γH(x⃗(2))dx1 +

t∑
i=3

(
t
i

)
1
t

(
2

t − 1

)i−1

γi−2

×
∫ 1

0
...

∫ 1−x1−...−x(i−2)

0
ev1γH(x⃗(i))

 i∏
j=1

F1(γ x j)

 dx(i−1)...dx1.

(259)

Setting γ = 0 in (259) we find that
F1(0) = 1.

We study the behavior of (259) as γ → 0. We expand F1(·) as

F1(γ) = 1 + α0γ ln γ + α1γ + o(γ). (260)

Using (260) in (259) and expanding for γ small we obtain at O(γ)

α1 +
1
2
= (α0 + v0)

∫ 1

0
H(x⃗(2))dx1 + α1 +

(t − 2)
3(t − 1)

= −1
2

(α0 + v1) + α1 +
(t − 2)
3(t − 1)

, (261)

so that
α0 + v1 = −

(t + 1)
3(t − 1)

, (262)

and α1 remains arbitrary. This shows that the solution of (259) is not unique, but becomes unique if α1 is
specified.

To uniquely determine F1(γ) we use asymptotic matching between the a and γ scales. For γ → 0+ we
obtain, from (251), (254), (258) and (260),

1
nzn

0

2t
(t − 1)2 γ[1 + α0γ ln γ + α1γ + o(γ)](1 + v1γ ln n) exp(v0n1/3γ2/3). (263)
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The expression in (263) should agree with the a-scale approximation as a → −∞, which we obtained
in (234). Noting that γ = −a/

√
n and comparing (263) to (234) we obtain

v0 =

(
2t

t − 1

)1/3

r0 = −
(

2t
t − 1

)1/3

|r0|, (264)

and

α1γ + α0γ ln γ + v1γ ln n = γ
[
−2(t + 1)

9(t − 1)
ln (γ
√

n) +
(t − 1)2

2t
κ +

(t + 1)
3(t − 1)

(γ − γE)
]
, (265)

where γE is the Euler constant. From (265) we must have

v1 = −
(t + 1)
9(t − 1)

, α0 = −
2(t + 1)
9(t − 1)

, (266)

and

α1 =
(t − 1)2

2t
κ +

(t + 1)
3(t − 1)

(1 − γE). (267)

Note that (266) is consistent with (262). With (267) the solution to (250) is unique and may be computed,
e.g., in the form of the series in (260).

To analyze (259) further (with v1 = −(t + 1)/[9(t − 1)]) we let

F1(γ) = exp (−v1γ ln γ) F2(γ), (268)

and obtain

(eγ − 1)F2(γ) =
∫ γ

0
F2(u1)F2(γ − u1)du1 +

t∑
i=3

(
t
i

)
1
t

(
2

t − 1

)i−1

×
∫ γ

0

∫ γ−u1

0
...

∫ γ−u1−···−u(i−2)

0

 i∏
j=1

F2(u j)

 du(i−1)...du1,

(269)

where u1 + · · · + ui = γ for each i in the sum. Introducing the Laplace transform

F(θ) =
∫ ∞

0
e−γθF2(γ)dγ, (270)

we obtain from (269)

F(θ − 1) =
t∑

i=1

(
t
i

)
1
t

(
2

t − 1

)i−1

F i(θ)

=
t − 1

2t

{(
1 +

2
t − 1

F(θ)
)t

− 1
}
.

(271)

We will show later that (271) also follows as a limiting form of the double transform equation (9).

Then (260) gives the behavior of F2(γ) as γ → 0

F2(γ) = 1 − (t + 1)
3(t − 1)

γ ln γ + α1γ + o(γ), γ → 0+,

and thus we have

F(θ) =
1
θ
+

(t + 1)
3(t − 1)

ln θ
θ2
+

[
α1 +

(t + 1)(γE − 1)
3(t − 1)

]
1
θ2
+ o(θ−2), θ → +∞. (272)
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Using (271) we can refine (272) to

F(θ) =
1
θ
+

[
(t + 1)
3(t − 1)

ln θ + α∗

]
1
θ2
+

G(θ)
θ3
+ OR(θ−4), (273)

where

α∗ = α1 +
(t + 1)(γE − 1)

3(t − 1)
=

(t − 1)2

2t
κ,

and

G(θ) =
[

(t + 1)
3(t − 1)

ln θ + α∗

]2

− (t + 1)2

9(t − 1)2 ln θ − t + 1
3(t − 1)

α∗ +
(t + 1)2

18(t − 1)2 .
(274)

In section 9 we shall show that using some of the higher-order terms in expansion (272) will make it more
efficient to numerically compute F(θ), and hence F2(γ).

Although we cannot solve (269) or (271) explicitly, we can guess the behavior of F2(γ) as γ → +∞,
which is needed for asymptotic matching purposes. This corresponds to F(θ) as θ → −∞. Let us assume
that F2(γ) in (269) behaves as

F2(γ) ∼ ek1γ ln γek2γγk3 k4, γ → ∞. (275)

Using (275) in (269) we find that the last term (i = t) in the sum dominates. Evaluating this (t − 1) fold
integral by Laplace’s method, we obtain

eγ

γ
ek1γ ln γek2γγk3 k4

∼ 1
t

(
2

t − 1

)t−1

γt−2
∫ 1

0
...

∫ 1−x1−···−x(t−2)

0

 t∏
j=1

ek1γx j ln (γx j)ek2γx j (γx j)k3 k4

 dx(t−1)...dx1,

∼ 1
t

(
2

t − 1

)t−1

γt−2(γ)tk3

(
1
t

)tk3

kt
4ek2γek1γ ln γek1γH(

→
( 1

t )(t))

×
∫ ∞

−∞
· · ·

∫ ∞

−∞
exp

[
−k1γ

1
2

∑
1≤i, j≤t

(
xi −

1
t

) (
x j −

1
t

) ∣∣∣∣∣∣∣∣ ∂
2H
∂xi∂x j


→(
1
t

)
(t)


∣∣∣∣∣∣∣∣
]
dx(t−1)...dx1

=
1
t

(
2

t − 1

)t−1

γt−2(γ)tk3

(
1
t

)tk3

kt
4ek2γek1γ ln γe−k1γ ln t 2(t−1)/2

tt/2

(
π

γ|k1|

)(t−1)/2

.

(276)

Here H(
→

( 1
t )(t)) means that H is evaluated at x1 = x2 = · · · = xt = t−1, which is where H in (253) is maximal.

In obtaining (276) we evaluated the last integral using∫ ∞

−∞
· · ·

∫ ∞

−∞
exp

[
−k1γ

1
2

∑
1≤i, j≤t

(
xi −

1
t

) (
x j −

1
t

) ∣∣∣∣∣∣∣∣ ∂
2H
∂xi∂x j


→(
1
t

)
(t)


∣∣∣∣∣∣∣∣
]
dx(t−1)...dx1

=
2(t−1)/2

tt/2

(
π

γ|k1|

)(t−1)/2

.

Comparing the left and right sides of (276) we conclude that

k1 = −
1

ln t
, k3 = −

1
2
, k4 = t

1
(t−1)

(t − 1)
2
√

2π ln (t)
. (277)

The constant k2 remain free, though it is uniquely determined once we know α1 in (260). In section 9 we
will compute k2 numerically. To summarize, in view of (268), we have obtained

F1(γ) ∼ t
1

(t−1)
(t − 1)

2
√

2π ln (t)
ek2γ

√
γ

exp
[(

(t + 1)
9(t − 1)

− 1
ln t

)
γ ln γ

]
, γ → ∞. (278)

46



Zhilong ZHANG; Charles Knessl/Progress in Applied Mathematics Vol.1 No.1, 2011

Using (278) and (258) in (251) gives the behavior of the γ-scale result for γ → ∞, and we will use this in
section 7 to asymptotically match to another approximation, that is valid for 0 < w < 1 and n→ ∞.

We next analyze F(θ) for θ → −∞, which will correspond to F2(γ) for γ +∞. We let τ = −θ → +∞
and find that (271) is consistent with an asymptotic expansion of the form

F(θ) ∼ (t − 1)
2

t
1

t−1 Atτ
1 + ∞∑

L=1

bLA−Ltτ
 , τ = −θ → −∞. (279)

Using (279) to asymptotically invert the transform in (270) yields

F2(γ) =
1

2πi

∫
Br

eγθF(θ)dθ

∼ (t − 1)
2

t
1

t−1
1

2πi

∫
Br

eγθAt−θdθ

=
(t − 1)

2
t

1
t−1

1
2πi

∫
C

1
ln t

exp
[
− γ

ln t
ln u

]
eu ln A du

u

=
(t − 1)

2
t

1
t−1

1
2πi

∫
C

1
ln t

u−
γ

ln t−1eu ln Adu

=
(t − 1)

2
t

1
t−1

1
ln t

(ln A)
γ

ln t

Γ
(
1 + γ

ln t

)
∼ (t − 1)

2
t

1
t−1

1√
2πγ
√

ln t
exp

[
γ

ln t
(1 + ln ln A)

]
exp

[
− γ

ln t
ln

(
γ

ln t

)]
, γ → ∞.

(280)

Here the contour C goes from −∞ + i0− to −∞ + i0+, encircling the branch cut along the negative real axis
in the u-plane. Also, we used the asymptotic behavior of the Gamma function

Γ(x) =

√
2π
√

x
xxe−x, x→ ∞.

By comparing (275) with (277) to (280) we find that k2 and A are related by

k2 =
ln (ln t) + ln (ln A) + 1

ln t
. (281)

In section 9 we shall numerically obtain A for t = 3 and then use (281) to obtain the corresponding value of
k2. We note that (279) implies that

tθ
[
ln[F(θ)] − ln

(
(t − 1)

2
t

1
t−1

)]
= ln A − (const.)t−τA−tτ(1 + o(1)), τ = −θ → ∞, (282)

so that the left hand side of (282) should converge to the constant lnA super-exponentially fast as θ → −∞.

Now we use the result on the γ-scale to obtain g(n, p) for p = O(n4/3). We scale

p = Θn4/3, Θ = O(1), Θ > 0, (283)

and use (250), so that
w−p = exp

[
γp
n
+ O

( p
n2

)]
∼ exp(γn1/3Θ). (284)

With (251), (254), (258) and (284), we obtain from (10)

1
2πi

∫
C

Gn(w)w−p−1dw ∼ 1
zn

0n2πi

∫
Br

2t
(t − 1)2 γF1(γ)n−

(t+1)γ
9(t−1)

× exp

n1/3

γΘ − (
2t

t − 1

)1/3

|r0|γ2/3

 dγ
n
.

(285)
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For n→ ∞ we evaluate the last integral by the saddle point method, noting that there is a saddle point along
the real axis, where

d
dγ

γΘ − (
2t

t − 1

)1/3

|r0|γ2/3

 = 0⇒ γ = γ∗ ≡
16t

27(t − 1)
|r0|3
Θ3 . (286)

Then we use the standard Laplace method to estimate (285) and obtain

g(n, p) ∼ 1
zn

0n13/6

|r0|9/2
Θ5

64t5/2
√

2
81(t − 1)7/2

√
π

n−
(t+1)γ∗
9(t−1) F1(γ∗) exp

[
− 8t

27(t − 1)
n1/3 |r0|3
Θ2

]
, (287)

which is valid forΘ = pn−4/3 = O(1) and as n→ ∞. Here F1(·) must obtained by numerically solving (259)
or (269). Thus we have derived (58).

Since F1(0) = 1, expanding (287) asΘ→ ∞ corresponds to simply neglecting the factors n−(t+1)γ∗/[9(t−1)]

and F1(γ∗). Thus (287) asymptotically matches to the result valid for p = O(n3/2), in view of (242) and
the fact that Ω = Θn−1/6. We can also deduce the behavior of the right side of (287) as Θ → 0, which
corresponds to p = o(n4/3) and γ∗ → ∞. Using (278) and (286) in (287) we obtain

1
zn

0n13/6

|r0|9/2
Θ5

64t5/2
√

2
81(t − 1)7/2π

t
1

(t−1) (t − 1)

2
√

2 ln t

3
√

3(t − 1)

4
√

t

Θ3/2

|r0|3/2
exp

[
− 8t

27(t − 1)
n1/3 |r0|3
Θ2

]
× exp

[
− (t + 1)

9(t − 1)
γ∗ ln n +

(
(t + 1)
9(t − 1)

− 1
ln t

)
γ∗ ln γ∗ + k2γ∗

]
=

1
zn

0n13/6

|r0|3
Θ7/2

1

π
√

ln t
t

1
t−1+2 8

√
3

27(t − 1)2

× exp

−1
3

(
2t

t − 1

)1/3

|r0|n1/3γ2/3
∗ −

(t + 1)
9(t − 1)

γ∗ ln n +
(

(t + 1)
9(t − 1)

− 1
ln t

)
γ∗ ln γ∗ + k2γ∗

 .
(288)

This yields an approximation to g(n, p) valid for p ≪ n4/3, and is explicit except for the constant k2 = k2(t).
We will use (288) in sections 7 and 8, for asymptotic matching purposes. In fact, the expression in (288)
will be key to seeing where g(n, p) is maximal as a function of n for a fixed large p.

6.2 Analysis of the Functional Equation

We briefly re-analyze the left region by using the functional equation (9). We use the scaling

w = 1 − γ
n
, z = z0

(
1 − v0γ

2/3

n2/3 −
v1γ ln n

n
+ v1γ

ln γ
n
− sγ

n

)
, (289)

with

G(z,w) = Ĝ(s, γ) = Ĝ
((

1 − v0γ
2/3

n2/3 −
v1γ ln n

n
+ v1γ

ln γ
n
− z

z0

)
n
γ
, (1 − w)n

)
. (290)

Also from (9) we have
G(z,w) −G(z, 1) = z[Gt(zw,w) −Gt(z, 1)]. (291)

From (289) we have

zw = z0

(
1 − v0γ

2/3

n2/3 −
v1γ ln n

n
+

v1γ ln γ
n

− (s + 1)γ
n

+ O(n−5/3)
)
, (292)
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and (9) becomes

Ĝ(s, γ) = 1 + z0

(
1 − v0γ

2/3

n2/3 −
v1γ ln n

n
+ v1γ

ln γ
n
− sγ

n

)
×

[
Ĝ

(
s + 1 + O(n−2/3), γ

)]t
.

(293)

Thus from (8) we obtain

Gn(w) =
1

2πi

∫
C

G(z,w)
zn+1 dz

∼ 1
2πi

∫
C

Ĝ(s, γ)
1
zn

0
ev0n1/3γ2/3

ev1γ ln ne−v1γ ln γesγ γds
n

=
1

zn
0n

ev0n1/3γ2/3
ev1γ ln n 1

2πi

∫
C

Ĝ(s, γ)e−v1γ ln γesγγds.

(294)

Comparing (294) with (251), we have

1
2πi

∫
C

Ĝ(s, γ)e−v1γ ln γesγγds ∼ F(γ; n). (295)

Setting

G(z,w) = Ĝ(s, γ) ∼ t
t − 1

[
1 + B(s, γ)

]
. (296)

Using (296) in (293), for n→ ∞ we obtain

t
t − 1

[
1 + B(s, γ)

]
= 1 +

(t − 1)t−1

tt

( t
t − 1

)t [
1 + B(s + 1, γ)

]t

= 1 +
1

t − 1

[
1 + B(s + 1, γ)

]t
.

(297)

For s→ ∞, the solution to (297) has the form

1
s
+

ln s
s2 +

f (γ)
s2 + o

(
1
s2

)
,

where f (·) is an arbitrary function. By asymptotically matching to the a-scale we find that f (γ) is a constant,
and then B(s, γ) will be independent of γ, so we write B(s, γ) = B(s). Thus we have

B(s) =
1
t

{[
1 + B(s + 1)

]t
− 1

}
. (298)

Setting s = θ − 1, (298) becomes

B(θ − 1) =
1
t

{[
1 + B(θ)

]t
− 1

}
. (299)

Rescaling B(θ) as

B(θ) =
2

t − 1
B̃(θ),

(299) then leads to

B̃(θ − 1) =
t∑

i=1

(
t
i

)
1
t

(
2

t − 1

)i−1

B̃i(θ). (300)

Using (296) in (295), and recalling (258) and (268), we obtain, for n→ ∞,

1
2πi

∫
C

t
t − 1

[1 + B(s)] e−v1γ ln γesγγds ∼ 2t
(t − 1)2 γe

−v1γ ln γF2(γ). (301)
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Here again we interpreted
1

2πi

∫
C

esγγds = γδ(γ) = 0, (302)

as a distribution. By comparing (271) to (300) ( or the inverse of (270) to (301)) we see that B̃(θ) = F(θ).
We have thus shown that (7) and (9) lead to equivalent limiting equations, that apply apply on the γ-scale.

7. FAR LEFT REGION

We consider (7) for 0 < w < 1 and n→ ∞, and (10) for n→ ∞ with p − n logt n = O(n). Note that pmin(n)
in (29) is contained in the scale p − n logt n = O(n).

First we assume that Gn(w) has an expansion of the form

Gn(w) = e−n ln (n) f (w)eng(w)nh(w)q(w)[1 + o(1)], (303)

for 0 < w < 1 and n → ∞. If f (w) > 0 this means that Gn(w) will decay faster than exponentially as
n→ ∞. Since

(n + 1) ln (n + 1) = n ln n + ln n + 1 + O(n−1),

with (303) the left side of (7) becomes

e−n ln (n) f (w)eng(w)n− f (w)+h(w)q(w)eg(w)− f (w)[1 + o(1)]. (304)

To evaluate the right side we treat the sum as an implicit Laplace-type integral. The major contribution
comes from the central region where each ik is O(n). Then, using (303), the sum in (7) becomes asymptotic
to

en ln w
∑

i1+···+it=n

e− f (w)[i1 ln i1+···+it ln it]eng(w)[i1i2 · · · it]h(w)qt(w). (305)

We use the Euler-Maclaurin formula to approximate the above sum and obtain

en ln wn2h(w)+1q2(w)eng(w)e−n ln (n) f (w)
∫ 1

0
[x1(1 − x1)]h(w) e−n f (w)H(

→
x(2))dx1, t = 2,

and
en ln wnth(w)+t−1qt(w)eng(w)e−n ln (n) f (w)

×
∫ 1

0
· · ·

∫ 1−x1−···−xt−2

0
(x1 · · · xt)h(w)e−n f (w)H(

→
x(t))dxt−1 · · · dx1, t ≥ 3.

(306)

Here H(
→
x(t)) =

∑t
j=1 x j log x j is as in (253). For now we assume that f (w) > 0 and estimate (306) by

Laplace’s method for n→ ∞, with the major contribution coming from
→
x = (x1, · · · , xt) = ( 1

t , · · · ,
1
t ) ≡

→
1
t .

Using

H(

→
1
t

(t)) = − ln t, H′(

→
1
t

(t)) = 0, H′′(

→
1
t

(t)) = 2t, (307)

(306) becomes asymptotic to

eng(w)e−n ln (n) f (w)nth(w)+t−1qt(w)
2(t−1)/2

tt/2

(
π

n f (w)

) (t−1)
2

(
1
t

)th(w)

exp
[
n( f (w) ln t + ln(w))

]
. (308)

Comparing (303) to (308) we conclude that

f (w) = − ln w
ln t
= − logt w > 0, (309)
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h(w) =
logt w
(t − 1)

− 1
2
, (310)

and
q(w) = w

t
(t−1)2

+ 1
(t−1) ln t

√
− logt (w)

1
√

2π
e

g(w)
t−1 . (311)

But, the function g(w) remains undetermined. Summarizing the result so far, with the ansatz (303) we
obtained

Gn(w) ∼ wn logt ne(n+ 1
t−1 )g(w)n

logt w
t−1 w

t
(t−1)2

+ 1
(t−1) ln t

√
− logt (w)
√

2nπ
[1 + o(1)]. (312)

The numerical studies in section 9 show that (312) is approximately correct for w > 0, however there are
oscillations that become numerically significant when w becomes small. Thus we re-consider (7) with the
following more general ansatz

Gn(w) = e−n ln(n) f (w)enB(w,n)nh(w)Q(w, n)[1 + o(1)]. (313)

We allow B(w, n) and Q(w, n) to depend weakly on n, in such a way that B(w, n+ 1) ∼ B(w, n) and Q(w, n+
1) ∼ Q(w, n) for n→ ∞. Repeating the calculation that we did with the previous ansatz (303), now we find
that as n→ ∞ the left side of (7) becomes

e−n ln(n) f (w)e(n+1)B(w,n+1)nh(w)− f (w)Q(w, n + 1)e− f (w). (314)

The right side of (7) is asymptotic to

en ln(w)
∑

i1+···+it=n

[i1i2 · · · it]h(w)[Q(w, i1) × · · · × Q(w, it)] exp [i1B(w, i1) + · · · + itB(w, it)]

× exp {− f (w)[i1 ln i1 + · · · + it ln it]} .
(315)

We shall again use Laplace’s method to evaluate (315). We first use a multi-variable Taylor expansion to

expand about
→
i = (i1, · · · , it) = ( n

t , · · · ,
n
t ) and obtain

t∑
k=1

ikB(w, ik) = nB
(
w,

n
t

)
+

[n
t

B2,2

(
w,

n
t

)
+ 2B2,1

(
w,

n
t

)] ∑
1≤l,m≤t−1

(
il −

n
t

) (
im −

n
t

)
+ · · · .

(316)

Here B2,1(·, ·) and B2,2(·, ·) means that the first and second derivative of the second variable respectively.

Using (316) in (315) leads to, for n→ ∞,

en ln we−n ln(n) f (w)en(ln t) f (w)nt h(w)+t−1
(

1
t

)t h(w)

enB(w, nt )Qt
(
w,

n
t

)
× 1
√

2

(
2
t

)t/2
 π

n
(

f (w) − 2n
t B2,1

(
w, n

t

)
− n2

t2 B2,2

(
w, n

t

)) (t−1)/2

.

(317)

Comparing (314) to (317) we regain (309) and (310). Since we assumed that B(w, n) varies slowly with n,
we use

(n + 1)B(w, n + 1) = nB(w, n) + B(w, n) + nBn(w, n) + · · · ,
and from (314) and (317) we also conclude that

B(w, n) = B
(
w,

n
t

)
. (318)
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The most general solution of (318) is the Fourier series

B(w, n) = g(w) +
∞∑

k=−∞
k,0

gk(w)e2πi(logt n)k ≡ g(w) + B∗0(w, n), (319)

where the sum represents an arbitrary, zero-mean periodic function of logt (n), with period one. We see
that (319) is consistent with our assumption of the slow variation of B(w, n). However, we cannot determine
explicitly the Fourier coefficient gk(w) using only the recurrence (7). This would seem to require an exact
solution to (7), which is not feasible. However, we will be able to obtain some analytic information about
the Fourier coefficients g(w) and gk(w), and will study g(w) numerically in section 9.

With (319) we write
n
t

B2,1

(
w,

n
t

)
= nBn(w, n) = B∗1(w, n),

n2

t2 B2,2

(
w,

n
t

)
= n2Bnn(w, n) = B∗2(w, n)

where

B∗1(w, n) =
2πi
ln(t)

∞∑
k=−∞

k gk(w)e2πik logt(n),

B∗2(w, n) =
2πi
ln(t)

∞∑
k=−∞

(
2πi
ln(t)

k2 − k
)

gk(w)e2πik logt(n) .

(320)

Comparing the factors in (314) and (317) that are O(1) in n, we obtain

Qt
(
w,

n
t

)
= Q(w, n)w

t
t−1+

1
ln t eg(w)eB∗0(w,n)+B∗1(w,n)

[
f (w) − 2B∗1(w, n) − B∗2(w, n)

2π

] (t−1)
2

. (321)

A particular solution to (321) is

Qp(w, n) = w
t

(t−1)2
+ 1

(t−1) ln t
1
√

2π
e

1
t−1 [g(w)+B∗0(w,n)+B∗1(w,n)]

√
f (w) − 2B∗1(w, n) − B∗2(w, n). (322)

Note that if B∗j(w, n) = 0 and Q(w, n) = q(w), (322) agrees with (311).

Setting
Q(w, n) = Qp(w, n)Q̃(w, n),

we see that Q̃ satisfies

Q̃t
(
w,

n
t

)
= Q̃(w, n). (323)

Setting
G̃(w, n) = ln [Q̃(w, n)],

we find that
tG̃

(
w,

n
t

)
= G̃(w, n). (324)

The most general solution to (326) is

G̃(w, n) = n × [
periodic function of logtn, of period 1

]
. (325)

But then G̃(w, n) can be incorporated into the factor exp[nB(w, n)] in (313). Thus using (309), (310), (319)
and (322) in (313), we have established (50) and (51).
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Next we examine the asymptotic matching between the results for 0 < w < 1 and w = 1 − O(n−1). For
γ → ∞ we expand (251) to obtain

1
zn

0n
exp

( 2t
t − 1

)1/3

r0n1/3γ2/3 − (t + 1)
9(t − 1)

γ ln n

 t
(t − 1)

t1/(t−1) √γ
√

2π ln t
ek2γ

× exp
[(

(t + 1)
9(t − 1)

− 1
ln t

)
γ ln γ

]
.

(326)

Here we also used (254), (258) and (278). By asymptotic matching, (326) should be consistent with the
expansion of (313) as w → 1. Since (326) has no oscillatory terms, we conclude that nB∗0(w, n) → 0 as
w → 1 and thus gk(w) = o(1 − w) as w → 1, for each k. Then (326) must match to the right side of (312),
which ignored the oscillations, as the latter is expanded for w→ 1.

Noting that

wn logt n =

(
1 − γ

n

)n logt n
= exp

[
− γ

ln t
ln n + O

(
ln n
n

)]
,

and, for 1 − w sufficiently small,
nlogt w ∼ 1,

(312) becomes
1

√
2π ln t

√
1 − w

n
exp

(
− γ

ln t
ln n

)
exp

[(
n +

1
t − 1

)
g(1 − γ

n
)
]
. (327)

Thus the matching is possible provided that as w ↑ 1, g(w) has the expansion

g(w) = ln
(

1
z0

)
+

(
2t

t − 1

)1/3

r0 n1/3(1 − w)2/3 +

(
1

ln t
− (t + 1)

9(t − 1)

)
(w − 1) ln (1 − w)

+ k2(1 − w) + o(1 − w), w ↑ 1.
(328)

We have thus used asymptotic matching to infer the behavior of g(w) as w → 1, and this will play an
important role in section 8.

Finally we study briefly the limit w→ 0 with n fixed. From the discussion in section 3, each Gn(w) is a
polynomial of the form

Gn(w) = Cnwpmin(n) + · · · + tn−1w(n
2), (329)

where

pmin(n) =
n∑

J=1

⌊logt((t − 1)J)⌋ =
(
n +

1
t − 1

)
⌊logt((t − 1)n + 1)⌋ −

t
(
t⌊logt((t−1)n+1)⌋ − 1

)
(t − 1)2

=

(
n +

1
t − 1

)
⌊logt((t − 1)n)⌋ −

t
(
t⌊logt((t−1)n)⌋ − 1

)
(t − 1)2 .

(330)

Using (329) in (7) we can obtain a recurrence relation for the Cn. For w → 0 we find that the largest
terms in the multi-sum in the right side of (7) are these very close to the centroid of the hyper-triangle
i1 + i2 + · · · + it = n, where each ik is approximately n/t. But, we can give a simple combinatorial argument
that determines Cn explicitly.

We recall that Cn is the number of t-ary trees that have minimum path length possible, for this particular
number of nodes n. Suppose first that n is of the form

n =
th+1 − 1

t − 1
= 1 + t + t2 + · · · + th,
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for some integer h. Then it is possible for the tree to be completely balanced, and this clearly leads to the
shortest path possible. Furthermore, there is precisely one such balanced tree, hence

Cn = 1, n =
th+1 − 1

t − 1
. (331)

Note that for t = 3 this corresponds to the subsequence n ∈ {1, 4, 13, 40, · · · }, and h is precisely the height
of the balanced tree.

Now consider values of n in the range

th+1 − 1
t − 1

< n <
th+2 − 1

t − 1
.

It is no longer possible to configure the nodes into a balanced tree. Letting

h = h(n) = ⌊logt(n(t − 1) + 1)⌋,

the shortest path length is attained by putting (th+1 − 1)/(t − 1) into a balanced tree of height h, and the
remaining nodes at depth h+1. There a total of th+1 possible positions for these additional nodes, and every
different choice of positions leads to a different tree. Hence we have

Cn =

(
th+1

n − th+1−1
t−1

)
, h = ⌊logt(n(t − 1) + 1)⌋, (332)

and this even contains (331), in the special case of a balanced tree, where the lower argument of the binomial
coefficient becomes zeros.

We can approximate Cn in (332) for n → ∞. by Stirling’s formula, and we denote this approximation
by Casy

n . For now we observe that only that Cn grows roughly exponentially with n, with some oscillations
due to appearance of the floor function in the definition of h. More precisely, we will have

ln
(
Casy

n

)
= n f0(Ω∗) + (ln n) f1(Ω∗) + f2(Ω∗) + o(1), (333)

where Ω∗ = {logt(n(t − 1) + 1)} with {·} denoting the fractional part. The functions fk(Ω∗) can be explicitly
computed from (332) and Stirling’s formula. Thus for n fixed we have shown that

Gn(w) ∼ Cnwpmin(n), w→ 0, (334)

where Cn can be obtained from (332).

We next examine the asymptotic matching of (334) as n→ ∞, with (317) for w→ 0. Using the Fourier
series

{x} = 1
2
−

∞∑
k=−∞
k,0

e2πikx

2πik
=

1
2
−
∞∑

k=1

sin(2πkx)
πk

and

t−{x} =
t − 1

t

∞∑
−∞

1
ln t + 2kπi

e2πikx,
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we can represent pmin(n) as

pmin(n) = n logt n + n
[
−1

2
− 1

ln t
+

ln (t − 1)
ln t

]
+ n

∞∑
k=−∞
k,0

ln t
2πik(ln t + 2πik)

e2πik logt [(t−1)n]

+
1

t − 1
logt n +

t + 1
2(t − 1)2 +

ln (t − 1)
(t − 1) ln t

+
1

t − 1

∞∑
k=−∞
k,0

e2πik logt [(t−1)n]

2πik
.

(335)

This form gives immediately the asymptotic behavior of pmin(n) as n → ∞. If (317) were to contain (334)
as a special case (at least for n → ∞), it would need to behave as Casy

n exp(pmin(n) ln w) for w → 0, where
Casy

n denotes the asymptotic behavior of Cn as n → ∞. By comparing (335) to (50) we find that the largest
factors, i.e., exp(n logt n ln w) = wn logt n, agree automatically, and the exp(O(n)) factors match if

g(w) ∼
(
−1

2
− 1

ln t
+

ln (t − 1)
ln t

)
ln w, w→ 0,

gk(w) ∼ ln t
2πik(ln t + 2πik)

e2πik logt(t−1) ln w, w→ 0.
(336)

We comment that the second, O(1), terms in the expansions of the gk(w) as w → 0 could be obtained by
taking into account the effects of Casy

n , and using the expression in (333). With (336) we then have

e
g(w)
t−1 w

t
(t−1)2

+ 1
(t−1) ln t ∼ w

t+1
2(t−1)2

+
ln (t−1)
(t−1) ln t , w→ 0,

and the term logt n
(t−1) in (335) agrees with the factor n

logtw
t−1 = w

logt n
t−1 in (50). Moreover,

exp
[

1
t − 1

(
B∗0(w, n) + B∗1(w, n)

)]
= exp


1

t − 1

∞∑
k=−∞
k,0

(
1 +

2πik
ln t

)
gk(w)e2πik logt(n)


∼ exp


ln w
t − 1

∞∑
k=−∞
k,0

e2πik logt [(t−1)n]

2πik

 , w→ 0

which corresponds to the last term in (335). However, (50) still has the factor

1
√

2πn

√
− logt(w) − 2B∗1(w, n) − B∗2(w, n).

But to evaluate the above as w→ 0 would require the second terms in the expansion of the gk(w) as w→ 0.
Note that 2B∗1(w, n) + B∗2(w, n) ∼ − logt w, in view of (336).

We thus conclude that the expansion for w < 1, when expanded for w → 0, may not be able to match
to (333) as n → ∞. This suggests that yet another scale may be needed to completely understand the
asymptotic behavior of Gn(w). This scale would have n → ∞ and w → 0 simultaneously. However, it is
not important for studying the asymptotic behavior for

∑
n g(n, p), as this requires w → 1, as we show in

section 8.
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Finally, we use the form (312) to get an approximation to g(n, p). We set

p = n logt n + αn, α = O(1)

so that
wn logt nw−p−1 = w−αn−1

and we obtain, for α fixed,

g(n, p) ≈ 1
2πi

∫
C

1
w

e
g(w)
t−1 n

logt w
t−1

√
− logt w

2πn
w

t
(t−1)2

+ 1
(t−1) ln t exp

[
n(g(w) − α ln w)

]
dw. (337)

Note that this neglects the Fourier coefficients gk(w) in (319), which tend to be numerically quite small. For
n → ∞ we use the saddle point method to estimate (337). There is a saddle point in the range w = O(1) if
we are able to solve the equation g′(w) = α/w. Our numerical studies in section 9 suggest that this is indeed
possible. The standard saddle point approximation then yields

g(n, p) ≈ n
logt (w∗)

t−1

2πn
w

t
(t−1)2

+ 1
(t−1) ln(t)

∗√
α + w2

∗g′′(w∗)
e

g(w∗)
t−1

√
− logt w∗

× exp
[
ng(w∗) − nα ln (w∗)

]
.

(338)

Here w∗ = w∗(α) must be obtained by numerically solving w∗g′(w∗) = α. In section 8 we obtain w∗
analytically for α→ ∞. Thus we have established (59).

8. THE MATCHING BETWEEN THE LEFT AND FAR LEFT RE-
GIONS

In section 7 we showed that the expansions for w = 1 − O(n−1) (p = O(n4/3)) and 0 < w < 1 (p =
n logt n + O(n)) match in some intermediate limit, where γ = n(1 − w)→ ∞ and w→ 1. In this section we
will examine in more detail this matching region, as this is the key to understanding the distribution of the
number of nodes in trees with a given large total path length p (cf. (28)). For a fixed p, we move from right
to left as we increase n. The result in (287) shows that for a fixed Θ = pn−4/3, g(n, p) still grows with n,
due to the dominant exponential factor of z−n

0 (we recall that z0 is as in (22) and 0 < z0 < 1). However, for
p = n logt n + O(n), (59) shows that for p/n − logt n = O(1), g(n, p) respectively grows (decays) with n as
g(w∗) − α log w∗ > 0 (< 0). But, numerical studies (cf. section 9) show that the quantity g(w∗) − α ln(w∗)
is negative unless w∗ → 1. Thus, to find the limiting distribution of the number of nodes we need the
maximum of g(n, p) over n, and this occurs exactly in the matching region, where this function will be
shown to reach a Gaussian peak.

As (p − n logt n)/n = α → ∞ we have w∗ → 1 and the non-constant Fourier coefficients in (50) (i.e.,
gk(w), k , 0) vanish as w→ 1. Thus we use (53) and (59). For α→ ∞, we can solve the equation

wg′(w) = α, (339)

for the saddle point w = w∗(α) asymptotically, using the following relations, which follow from the asymp-
totic formula for g(w) as w→ 1,

g(w) = ln
(

1
z0

)
−

(
2t

t − 1

)1/3

|r0|(1 − w)2/3 +

[
1

ln t
− (t + 1)

9(t − 1)

]
(w − 1) ln(1 − w)

− k2(w − 1) + o(w − 1), (340)
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g′(w) =
2
3

(
2t

t − 1

)1/3

|r0|(1 − w)−1/3 +

[
1

ln t
− (t + 1)

9(t − 1)

]
ln(1 − w)

+
1

ln t
− (t + 1)

9(t − 1)
− k2 + o(1), (341)

g′′(w) ∼ 2
9

(
2t

t − 1

)1/3

|r0|(1 − w)−4/3, w→ 1−. (342)

In the calculations that follow it is useful to define A0, A1, A2 by

A0 =
2
3

(
2t

t − 1

)1/3

|r0|, A1 =
1

ln t
− (t + 1)

9(t − 1)
, A2 = A1 − k2 =

1
ln t
− (t + 1)

9(t − 1)
− k2, (343)

and ∆ by
w∗ = 1 − ∆. (344)

With (343) and (344) we rewrite (339) as

α =
[
A0∆

−1/3 + A1 ln∆ + A2 + o(1)
]

(1 − ∆), ∆→ 0, (345)

which can be rearranged to obtain

∆

A3
0

= [α − A1 ln∆ − A2 + α∆ + o(1)]−3

= α−3
[
1 +

3
α

(A1 ln∆ + A2) + o(α−1)
]
.

(346)

Thus we have

∆ ∼ A0
3

α3 , α→ ∞, (347)

and (347) can be refined to the expansion

∆ =

(A0

α

)3 [
1 +
δ1
α
+
δ2

α2 + · · ·
]
, α→ ∞, (348)

where the δ j may depend weakly on α, as ln(α), and δ1 is given by

δ1 = 3A2 − 9A1 ln
(
α

A0

)
. (349)

We next calculate g(w∗) − α ln(w∗) as w∗ → 1 and α → ∞. Note that this is the exponential growth rate in
n of the approximation in (59). With (344), (348) and (349) we get

g(w∗) − α ln(w∗) = g(1 − ∆) − α ln(1 − ∆)

= ln
(

1
z0

)
+

A1

2
∆ ln∆ +

(
3
2

A2 + k2

)
∆ − α∆

2
+ O(α∆2)

= ln
(

1
z0

)
−

A3
0

2α2 +
A3

0

α3

[
3A1 ln

(
α

A0

)
+ k2

]
+ OR(α−4).

(350)

Here we used (345) in the alternate form α∆ ∼ A0∆
2/3 + A1∆ ln∆ + A2∆.

To locate the maximum of ng(w∗) − nα ln(w∗) over n, we need to solve asymptotically

∂

∂n
[ng(w∗) − nα ln(w∗)] = g(w∗) +

ln n + 1
ln t

ln(w∗) = 0. (351)
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We note that here w∗ depends on n through α, and from (339) we have g′(w∗) = α/w∗. Also, from nα =
p − n logt n we get ∂(nα)/∂n = − logt n − 1/ ln t. We write the solution to (351) as n = ñ = ñ(p) and set

F(n; p) = ng(w∗) − nα ln w∗, (352)

so that
Fn(n; p) = g(w∗) +

ln n + 1
ln t

ln(w∗), (353)

and
Fnn(n; p) = g′(w∗)

∂w∗
∂n
+

ln w∗
n ln t

+
(ln n + 1)

w∗ ln t
∂w∗
∂n

=

(
α +

ln n + 1
ln t

)
1

w∗

∂w∗
∂n
+

ln w∗
n ln t

.

(354)

We define
Ψ0(p) = F(ñ(p); p), (355)

and
V0(p) = −1/Fnn(ñ(p); p). (356)

We will show that Ψ0(p) provides an asymptotic approximation to the exponential growth rate of the total
number of trees of path length p, while ñ(p) and V0(p) yield asymptotically the mean and variance of the
Gaussian distribution of the number of nodes in such trees.

For w∗ → 1 we use (340) and (348) in (351), and this leads to

ln
(

1
z0

)
− ln n + 1

ln t
A3

0

α3

[
1 +

3
α

(
A2 − 3A1 ln

(A0

α

))]
− 3

2
A3

0

α2

[
1 +

2
α

(
A2 − 3A1 ln

(
α

A0

))]
+ k2

A3
0

α3 − 3A1
A3

0

α3 ln
(A0

α

)
+ o(α−3) = 0.

To leading order, ln(1/z0) must be balanced by the term proportional to α−3 ln n, and we thus have

α ∼ A0

(ln t)1/3

(ln n)1/3

(− ln z0)1/3 , n = ñ(p). (357)

This shows that for a fixed p, the maximum of g(n, p) occurs in the range p = n logt n + O[n(ln n)1/3]. We
compare this to pmin = n logt n + O(n) (cf. (29)). From (347) and (357) we conclude that

∆̃ ∼ − ln t ln z0

ln n
∼ 1 − w̃ n = ñ(p)→ ∞. (358)

where w̃, ∆̃ and α̃ are defined by

w̃ = w̃(p) = w∗(ñ(p), p), ∆̃ = ∆̃(p) = 1 − w∗(ñ(p), p),

α̃ =
p − ñ(p) logt [ñ(p)]

ñ(p)
,

(359)

and w∗ = w∗(n, p) satisfies (339). Using (59) we obtain

∑
n

g(n, p) ∼ 1
2πñ

(w̃)
t

(t−1)2
+ 1

(t−1) ln t√
α̃ + w̃2g′′(w̃)

n
1

t−1 logt w̃e
1

t−1 g(w̃)
√
− logt w̃

×
∞∑

n=−∞
exp

[
ng(w̃) − nα ln w̃ +

1
2

Fnn(ñ(p); p)[n − ñ(p)]2
]
,

(360)
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where we expanded g(n, p) about n = ñ(p), and thus estimated the sum
∑

n g(n, p) by Laplace’s method.
Now, we have

nlogt w̃ = exp[logt n ln(1 − ∆̃)] ∼ exp[− ln(z−1
0 )] = z0,

eg(w̃) ∼ exp[ln(z−1
0 )] =

1
z0
,

and

α̃ + w̃2g′′(w̃) ∼ α̃ + 1
3

A0(∆̃)−4/3 ∼ 1
3

A0

(
ln ñ

− ln t ln z0

)4/3

.

Thus (360) yields ∑
n

g(n, p) ∼ 1
2πñ

(
1

ln ñ

)7/6 √
3
A0

(ln t)2/3(− ln z0)7/6

×
√

2π
−Fnn(ñ(p); p)

exp[F(ñ(p); p)].

(361)

In view of (351) and (352) we get

F(ñ(p); p) = −
(
p +

ñ
ln t

)
ln w̃ =

(
p +

ñ
ln t

)
[∆̃ + O(∆̃2)]. (362)

From (357), (358), (361) and (362) we obtain the growth rate

ln

∑
n

g(n, p)

 ∼ p
ln p

(− ln t ln z0) =
p

ln p
ln t ln

(
tt

(t − 1)t−1

)
, p→ ∞. (363)

To refine (363), we consider (339) and (351) as a simultaneous system to determine w̃ and ñ as functions
of p. Expanding (351) around w∗ = 1 and setting

S = S (p) = ln ñ, (364)

we obtain

ln
(

1
z0

)
− S

ln t
∆ − S

2 ln t
∆2 − 3

2
A0∆

2/3 − A1∆ ln∆ + k2∆ −
1

ln t
∆ + OR(S −2) = 0, (365)

where we also used (340). As S → ∞ it follows from (365) that ∆ has the expansion

∆ =
a
S
+

b
S 4/3 +

c
S 5/3 +

d
S 2 + OR(S −7/3), (366)

where

a = ln t ln
(

1
z0

)
, b = 0, (367)

c = −3
2

(ln t)A0a2/3 = −3
2

(ln t)5/3A0

[
ln

(
1
z0

)]2/3

, (368)

d = ln t
[(

k2 −
1

ln t

)
a − a2

2 ln t
+ A1a ln

(S
a

)]
, (369)

and we note that d depends weakly on S (as ln S ).

We use (341) and (345), and re-write (339) as

p
ñ
− logt ñ = (1 − ∆)

[
A0∆

−1/3 + A1 ln∆ + A2 + o(1)
]
. (370)
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We define n∗ and Q by
ñ(p) = pn∗(p), Q = ln p, (371)

with which (370) leads to

1
n∗
− S

ln t
= A0

(S
a

)1/3

− A0
c

3a4/3

1
S 1/3 − A0

d
3a4/3

1
S 2/3

+ A1

[
− ln

(S
a

)
+

c
a

1
S 2/3

]
+ A2 − A0

a2/3

S 2/3 + OR(S −1).
(372)

Here we also used (366) to expand ∆ in (370). Noting that

S = Q + ln n∗ ∼ Q,

and
S 1/3 ∼ Q1/3 +

1
3

Q−2/3 ln n∗

we re-write (372) as

1
n∗
=

Q
ln t
+

ln n∗
ln t
+

A0

a1/3 Q1/3 + A2 + A1 ln a − A1 ln Q + OR(Q−1/3). (373)

Thus we obtain
n∗ =

ln t
Q
+

v
Q5/3 +

v′

Q2 + OR(Q−7/3), (374)

where
v = − A0

a1/3 (ln t)2,

and
v′ = ln t [ln Q − ln (ln t)] + [A1 ln Q − (A2 + A1 ln a)] (ln t)2.

Thus, as p→ ∞ (with Q = ln p) we have

ñ(p) =
p ln t

Q

[
1 − A0

a1/3

ln t
Q2/3 +

Z
Q
+ OR(Q−4/3)

]
,

Z = (A1 ln t + 1) ln Q − ln ln t − (A2 + A1 ln a) ln t.
(375)

Recalling that n = ñ(p) corresponds to the maximum of g(n, p) for a fixed large p, (376) is also the expan-
sion of the asymptotic mean N(p), so we have derived (34). Also we note that

nmax(p) − ñ(p) ∼ A0
(ln t)2

a1/3

p
(ln p)5/3 , p→ ∞,

where nmax(p) is the inverse of pmax(n) in (29). This gives an estimate of how the average number of nodes
in a tree of path length p→ ∞ differs from the maximum number possible.

Next we refine (363) and derive an approximation to the variance in (356). From (355), (362) and (366)
we obtain

Ψ0(p) =
(
p +

ñ
ln t

) [ a
S
+

c
S 5/3 +

(
d +

a2

2

)
1

S 2 + OR(S −7/3)
]

=

(
p +

p
ln p
+ O

(
p

Q5/3

)) {
a
Q
+

c
Q5/3

+

[
d +

a2

2
+ a (ln Q − ln(ln t))

]
1

Q2 + OR(S −7/3)
}

=
p
Q

[
a +

c
Q2/3 +

(
a +

a2

2
+ d + a ln Q − a ln(ln t)

)
1
Q
+ OR(S −4/3)

]
,

(376)
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where a = − ln t ln z0 is as in (367). From (369) we find that

d + a +
a2

2
= a ln t

[
k2 + A1 ln

(Q
a

)]
+ o(1), Q→ ∞.

This establishes the result in (30) for ln
[∑

n g(n, p)
]
.

To get the variance, we use (354) and (356). From (348) we obtain

∂w∗
∂n
∼ − 3
α4

A3
0

n

(
p
n
+

1
ln t

) {
1 +

1
α

[
4A2 + 3A1 − 12A1 ln

(
α

A0

)]}
,

and then (354) leads to

−nFnn =

[
ln n
ln t
+ α +

1
ln t

]2 3A3
0

α4

{
1 +

1
α

[
4A2 + 3A1 − 12A1 ln

(
α

A0

)]}
+ O

(
1

ln n

)
. (377)

We set n = ñ(p) and use[
ln n
ln t
+ α +

1
ln t

]2

=

[ Q
ln t
+ O(Q1/3)

]2

=
Q2

(ln t)2 + O(Q4/3).

Then from (357) and (376) we obtain

α̃ ∼ A0

(− ln t ln z0)1/3

[
ln p + ln ln t − ln Q + O(Q−2/3)

]1/3 ∼ A0

(− ln t ln z0)1/3 Q1/3.

Using the above in (377) we get

Fnn(ñ(p); p) ∼ − 1
ñ(p)

Q2

(ln t)2

3
A0

[ln t(ln z0)]4/3Q−4/3 ∼ −Q5/3

p
3 ln (z−1

0 )a1/3

A0(ln t)2 . (378)

Thus we have obtained the leading term in the variance in (35). We will next use a somewhat different
method to derive the correction term.

Using (378) and (376) in (361) yields (30). In the limit α → ∞ and pn−4/3 → 0 we have derived the
approximation

g(n, p) ∼ 3
π

t[ t/(t−1)−1/6]

25/3(t − 1)5/6
√

ln t|r0|
1
n

(A0

α

)7/2

exp
− 1

t − 1
A3

0

α3

ln n
ln t


× 1

zn
0

exp
−A3

0n

2α2 + n
A3

0n

α3 (k2 + 3A1 lnα − 3A1 ln A0)
 . (379)

We obtained (379) by expanding (59) for w∗ → 1, and (379) matches to (288), as can be seen by replacing
α in (379) by p/n − logt n ∼ p/n. In this limit we note that

γ∗ =
16t

27(t − 1)
|r0|3
Θ3 =

16t
27(t − 1)

|r0|3n4

p3 ∼
A3

0

α3 n.

Expanding (379) about n = ñ(p) (or α = α̃) yields the Gaussian form in (36).

In view of (379), we define

H(α) = −
A3

0

2α2 +
A3

0n

α3 (k2 + 3A1 lnα − 3A1 ln A0),

Φ(n, p) ≡ −n ln z0 + nH(α).
(380)
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Thus ∂Φ/∂n = 0 is equivalent to

− ln z0 + H(α) − 1
ln t

H′(α) − p
n

H′(α) = 0. (381)

We write the solution to (381) as

n = n̂(p), α̂(p) =
p

n̂(p)
− logt [n̂(p)],

where p is fixed. Since α = p/n − logt n, we have

∂2Φ

∂n2 = −
1

n ln t
H′(α) +

1
n

(
p
n
+

1
ln t

)2

H′′(α), (382)

and we define Φ̂ and V̂(p) by

Φ̂ = Φ(n̂(p), p), V̂(p) = − 1
Φnn(n̂(p), p)

. (383)

Solving for n̂ asymptotically as p → ∞ regains the expansion of the mean in (376). However using the
more implicit form (381) has some advantage numerically (cf. section 9). Given p we can solve (381)
numerically for n̂ or α̂, and then compute Φ̂ from (380), and V̂ from (382) and (383). We can then use
these numerical values of (Φ̂, n̂, V̂) as approximations to the growth rate, mean and variance, and these are
asymptotically equivalent to the results in (30)-(35). For example, solving (381) for p→ ∞ we obtain

α̂ = A0

(Q
a

)1/3

+ A2 + A1 ln a − A1 ln Q + OR(Q−1/3), (384)

and we have

H′′(α̂) = −
3A3

0

α̂4 +
A3

0

α̂5

[
36A1 ln

(
α̂

A0

)
− 12A2 − 9A1

]
. (385)

Using (384) in (385) yields

H′′(α̂) = − 3
A0

(
a
Q

)4/3

− 9A1

A2
0

(
a
Q

)5/3

+ OR(Q−2). (386)

Then we have
∂2Φ

∂n2 (n̂(p), p) =
1
n̂

(
p
n̂
+

1
ln t

)2

H′′(α̂) + O(
1

n̂ ln n̂
). (387)

Using (386) in (387) we obtain the two term approximation to the variance in (35). Note that the leading
terms in the expansion of the growth rate and the mean do not involve the root r0 of the Airy function, but
the leading term for the variance does involve r0. The correction terms for the growth rate and mean are
smaller than the leading terms by factor of Q−2/3 = (ln p)−2/3, while the correction term to the variance
is smaller than its leading term by a factor of only in O(Q−1/3) = O((ln p)−1/3). We have thus derived the
various formulas in Results 1 and 2 of section 2.

9. NUMERICAL STUDIES

We provide numerical results that determine some unknown constants or functions, and these also give
support to the various assumptions we made. Throughout this section we set t = 3, as the numerical trends
are essentially independent of t.
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For w > 1, we provided in Table 1, numerical values of G∗(w) (∼ Gn(w)t1−nw−(
n
2), n → ∞) for various

w, and plotted this function in (cf. section 2). We test the accuracy of the asymptotic relation in (39). Let
Ḡn(w) be the exact solution to (65). Our result shows that Ḡn(w)→ G∗(w) as n→ ∞ for w > 1, and that

(w − 1) ln[G∗(w)]→ d0 = (t − 1)
∫ ln( t

t−1 )

0

x
ex − 1

dx = 0.732426 · · · , (388)

as w ↓ 1. In Table 2, we compute (w − 1) ln[Ḡ∞(w)] and (w − 1){ln[Ḡ∞(w)] − 1
2 ln(w − 1)} for various

w > 1. For each fixed w, Ḡ∞(w) is calculated by iterating (65) for n large enough until Ḡn(w) converges to
a constant to 3 digits. Both of the tabulated functions should converge to d0 as w ↓ 1, with the latter one
converging more rapidly, since it includes information from the algebraic factor

√
w − 1 in (39). Table 2

shows that both functions are indeed approaching d0 as w → 1, with the second function having a faster
rate of convergence. In Table 3 we calculate

D1(w) ≡ exp
(
− d0

w − 1

)
Ḡ∞(w)
√

w − 1
, (389)

for various w > 1, to try to confirm the constant d1 in (39). Our analysis predicts that D1(w) → d1 =

1.72613 · · · as w ↓ 1. It became very difficult to compute Ḡ∞(w) for w ≤ 1.04, since for w & 1 the
convergence of Ḡn to Ḡ∞ is very slow. We see from Table 3 that D1(w) still changes appreciably as w goes
from 1.08 to 1.06 to 1.04. The data trend is consistent with convergence to the theoretical value, but w
would have to made much closer to 1 for us to make a more definite conclusion.

Table 2: Numerical d0

w (w − 1) ln(Ḡ∞) (w − 1){ln[Ḡ∞(w)] − 1
2 ln(w − 1)}

2 0.4688 0.4688
1.8 0.4860 0.5753
1.6 0.5090 0.6622
1.4 0.5418 0.7251
1.2 0.5949 0.7558
1.18 0.6023 0.7566
1.16 0.6103 0.7569
1.14 0.6190 0.7566
1.12 0.6285 0.7557
1.10 0.6391 0.7542
1.08 0.6510 0.7520
1.06 0.6645 0.7490
1.04 0.6805 0.7449
1.02 0.696 0.735

1 0.7324 0.7324

We next study the β-scale, where w = 1 + β/n = 1 +O(n−1) with β > 0. Then (41) gives the asymptotic
result. In Table 4 and Table 5, we compare

1
n

ln
[
Gn

(
1 +
β

n

)]
, (390)

to Φ(β) = ln t + β2 + ϕ(β) (cf. (41)) for β = 0.25, 0.5, 1, 2 and 4, and for various n. Our WKB expansion
predicts that (390) should approach Φ(β) as n → ∞. The data in the tables clearly demonstrates this
convergence. Also, the data are consistent with an O(n−1 ln n) error term, which is indicated by (41). The
smaller the β the slower the convergence (cf. Table 4), which is consistent with our analysis that once β
becomes O(n−1/2), the expansion becomes invalid and we have to use the a-scale result.
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Table 3: Numerical D1(w)

w D1(w)
5 0.458554

4.5 0.484995
4 0.516684

3.5 0.555658
3 0.605303

2.5 0.671797
2 0.768269

1.8 0.821631
1.6 0.889573
1.4 0.981769
1.2 1.12419
1.18 1.14386
1.16 1.16520
1.14 1.18857
1.12 1.21446
1.10 1.24360
1.08 1.27714
1.06 1.31707
1.04 1.36747

1 1.72614

Table 4: Numerical exponential rate β = 0.25, 0.5, 1

(a) β = 0.25

n 1
n ln(Gn) Φ(β)

10 1.4913 1.9234
20 1.6756
30 1.7473
40 1.7861
50 1.8106
75 1.8450
100 1.8631
125 1.8743
150 1.8819
200 1.8917
250 1.8977
500 1.9100
750 1.9142
1000 1.9164

(b) β = 0.5

n 1
n ln(Gn) Φ(β)

10 1.5659 1.9597
20 1.7416
30 1.8075
40 1.8424
50 1.8640
75 1.8938
100 1.9091
125 1.9185
150 1.9284
200 1.9329
250 1.9379
500 1.9482
750 1.9518
1000 1.9536

(c) β = 1

n 1
n ln(Gn) Φ(β)

10 1.7169 2.0778
20 1.8842
30 1.9439
40 1.9747
50 1.9935
75 2.0194

100 2.0328
125 2.0410
150 2.0466
200 2.0537
250 2.0581
500 2.0673
750 2.0706
1000 2.0723

In Table 6, we compare
√

ne−nΦ(β)Gn

(
1 +
β

n

)
, (391)

to
√
βĝ(β), for β = 0.5, 1, and 2, and for various n. Our analysis predicts that the limit of (391) should

be
√
βĝ(β). The data again demonstrate the convergence suggested by the WKB ansatz (80). However,

the convergence is much slower than that predicted by the O(n−1) error term in (80). The numerical results
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Table 5: Numerical exponential rate β = 2, 4

(a) β = 2

n 1
n ln(Gn) Φ(β)

10 2.0235 2.4192
20 2.2067
30 2.2717
40 2.3054
50 2.3262
75 2.3548
100 2.3696
125 2.3787
150 2.3849
200 2.3928
250 2.3977
500 2.4078
750 2.4113
1000 2.4132

(b) β = 4

n 1
n ln(Gn) Φ(β)

10 2.6267 3.2787
20 2.9181
30 3.0273
40 3.0850
50 3.1208
75 3.1701
100 3.1956
125 3.2113
150 3.2219
200 3.2353
250 3.2435
500 3.2604
750 3.2662
1000 3.2692

suggest that the error term may be O(n−1/2) (i.e., a term n−1/2g(1/2)(β)) should be included in the expansion
in (80). To resolve this issue more conclusively, we would have to study higher-order asymptotic matchings
between the a-scale and the β-scale. This would require, among other things, continuing (44) into the range
a > 0 and evaluating the result for a→ +∞.

Table 6: Numerical results for
√

nGn exp(−nΦ) for β = 0.5, 1, 2

(a) β = 0.5

n
√

ne−nΦGn
√
βĝ

10 0.06161 0.07439
20 0.05697
30 0.05699
40 0.05792
50 0.05902
75 0.06148
100 0.06327
125 0.06453
150 0.06544
200 0.06664
250 0.06741
500 0.06919
750 0.06996
1000 0.07042

(b) β = 1

n
√

ne−nΦGn
√
βĝ

10 0.08564 0.12849
20 0.09311
30 0.09853
40 0.10208
50 0.10450
75 0.10815
100 0.11027
125 0.11172
150 0.11280
200 0.11434
250 0.11541
500 0.11821
750 0.11952

1000 0.12037

(c) β = 2

n
√

ne−nΦGn
√
βĝ

10 0.06045 0.08266
20 0.06384
30 0.06556
40 0.06671
50 0.06757
75 0.06907

100 0.07008
125 0.07084
150 0.07143
200 0.07233
250 0.07298
500 0.07481
750 0.07574
1000 0.07633

Next we consider the a-scale result. Recall that obtaining the right tail of the Airy distribution involved
showing that

D(y) = D(a2/3) ∼
√

2 t3/2

√
π(t − 1)5/2

a exp
[

t
6(t − 1)

a2
]
, a→ +∞. (392)

In Table 7 we give D(a2/3)a−1e−
t

6(t−1) a2
for various values of a ≥ 1. The table clearly shows that the function
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is converging to the constant 3
√

3/(4π) = 0.73290 · · · . To compute the exact values of D(y) we used (145),
(146) and (154). Then the u j in (146) were computed by solving the recurrence

Vn+1 =

√
t

√
2(t − 1)

(3
2

n + 1
)

Vn +
(t − 1)2

2t

n∑
i=0

ViVn−i

 , v0 =
t

2(t − 1)2 , (393)

and using

un = mn+1 =
(n + 1)!
Γ( 3

2 n + 1)
Vn.

Table 7: a-scale numerical constant

a D(a2/3)a−1e−a2/4

1 0.7651650024
2 0.6619976925
3 0.6722963306
4 0.6940454045
5 0.7091235006
6 0.7174633676
7 0.7220450344
8 0.7247911444
9 0.7265872121
10 0.7278366898
11 0.7287445990
12 0.7294264389
13 0.7299521449
14 0.7303663257
15 0.7306986147
20 0.7316718710
25 0.7321178292
30 0.7323589279
50 0.7327082900

100 0.7328557843
∞ 0.7329037680

Next we discuss the expansion on the γ-scale, where w = 1 − O(n−1). We need to solve (269) or (271).
We make use of the asymptotic behavior of F(θ) in (273) as θ → ∞, and use the following numerical
scheme: (1) Fix a large N, (2) let F̃(L) satisfy the recurrence

F̃(L − 1) = F̃(L) + F̃2(L) +
1
3

F̃3(L), L = N,N − 1, · · · ,−M + 1, (394)

subject to the terminal condition

F̃(N) =
1
N
+

2
3 ln N + α∗

N2 +
( 2

3 ln N + α∗)2 − 4
9 ln N − 2

3α∗ +
2
9

N3 ,

(3) iterate (394) backward until L = −M + 1, and (4) use the approximation

F(−M) ≈ F̃(M).
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For M positive and large, (279) implies that for t = 3

3−M
[
ln[F(−M)] − 1

2
ln 3

]
= ln A − (const.)3−MA−3M

+ · · · , M → ∞. (395)

The left side of (395) should converge to the constant ln A very rapidly as M → ∞, if A > 1. Our numerical
results show that M = 12 is sufficient to get ln A to several decimal places. We take M = 12, solve (394)
for various N and provide 3−M

[
ln[F(−M)] − 1

2 ln 3
]
, which is an estimate to ln A. This shows that for t = 3

(cf. Table 8)

ln A ≈ 6.696, (396)

and then (281) yields

k2 ≈ 2.727. (397)

We recall that k2 corresponds to the exponential growth rate of F1(γ) in (278), and thus that of the approxi-
mation in (251) on the γ-scale, or (46)-(49).

Table 8: Numerical ln(A)

N 3−M
{
ln[F(−M)] − 1

2 ln 3
}

1000 6.6948
2000 6.6958
3000 6.6961
5000 6.6962
10000 6.6963

Table 9: Numerical g(w)

w g(n)
num(w)

0.999999 1.9081
0.99999 1.9070
0.9999 1.9023
0.999 1.8832
0.99 1.8127
0.9 1.6314
0.8 1.5735
0.7 1.5638
0.6 1.5867
0.5 1.6402
0.4 1.7297
0.3 1.8697
0.2 2.0964
0.1 2.53
0.01 4.15-4.20
0.001 5.83-6.08
0.0001 7.52-8.03

0.00001 9.21-10.01

We next consider n → ∞ with 0 < w < 1, where approximation (53) applies (or its refined form (50),
that contains oscillations). Neglecting the oscillations and defining

g(n)
num(w) ≡ 1

n + 1
2

ln
Gn(w)w−n log3 n

√
2nπ ln 3

n
ln w
2 ln 3 w

3
4+

1
2 ln 3
√
− ln w

 , (398)
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Table 10: Numerical k2

w g(n)
num(w) CONS T

0.8 1.57353 2.9789
0.9 1.63140 2.8994

0.925 1.65929 2.8773
0.95 1.69757 2.8529
0.975 1.75525 2.8228
0.99 1.81266 2.7960

we should have g(n)
num(w)→ g(w) as n→ ∞ each fixed 0 < w < 1. We also should have n−1 ln

[
Gn(w)w−n log3 n

]
→ g(w), but (398) converges faster. In Table 9 we list data for various w and n large. These data show that
for n large enough, g(n)

num(w) is constant to several decimal places, with the exception of very small values
of w. When w ≤ 0.01 the function oscillates with n over a certain range. The oscillations corresponding
to gk(w) in (51) indeed exist, but they are numerically small,unless w itself is very small. For practical
purposes we can use (53) and (59) as the approximations to Gn(w) and g(n, p), though g(w) still needs to
be determined numerically, e.g., using Table 9. We also observe that g(w) is reaching the theoretical value
g(1) = ln

(
27
4

)
= · · · as w→ 1.

We study the matching region between the scales 0 < w < 1 and w = 1 − O(n−1) in Table 10. We have
shown that g(w) behaves as in (340) for w ↑ 1. Let us define

CONS T = CONS T (w; n)

≡ 1
1 − w

{
g(n)

num(w) −
[
ln

(
27
4

)
+ 31/3r0(1 − w)2/3 +

(
1

ln 3
− 2

9

)
(w − 1) ln(1 − w)

]}
.

(399)

We can choose n sufficiently large to make (399) independent of n to several decimal places. As w → 1,
CONS T should converge to the constant k2. The convergence becomes very slow with n when w is very
close to one. However the data show that CONS T is decreasing and converging to the theoretical value
in (397). Thus we have provided numerical evidence both for the value of k2 and the asymptotic form
in (340).

(a) p = 190 with n in the range [20..62] (b) p = 250 with n in the range [23..77]

Figure 3: Plots of g(n, p)

Finally, we provide numerical studies for our results on the growth rate of the total number of trees of a
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given path length, and the distribution of the trees by their number of nodes. In Figure 3, we plot the exact
g(n, p) for p = 190 and p = 250 with n ∈ [nmin(p), nmax(p)] = [20, 62] and [23, 77] respectively. The graphs
possibly resemble a Gaussian near their peak, but these values of p are too small to conclude this definitely.
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[11] Takács, L. (1993). The asymptotic distribution of the total heights of random rooted trees. Acta Sci.

Math. (Szegad), 57(1-4), 613-625.
[12] Flajolet, P., & Odlyzko, A. (1982). The average height of binary trees and other simple trees. Journal

of Computer and System Sciences, 25(2), 171-213.
[13] Louchard, G. (1984). The Brownian excursion area: A numerical analysis. International Journal of

Computers and Mathematics with Applications, 10(6), 413-417.
[14] Louchard, G. (1984). Kac’s formula, Levy’s local time and Brownian excursion. J. Appl. Prob., 21(3),

479-499.
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