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Abstract: We show that if v is a regular semi-classical form (linear
functional), then the form u defined by (x− τ2)σu = −λv and σ(x− τ)u = 0
where σu is the even part of u, is also regular and semi-classical form for
every complex λ except for a discrete set of numbers depending on v. We give
explicitly the recurrence coefficients and the structure relation coefficients of
the orthogonal polynomials sequence associated with u and the class of the
form u knowing that of v. We conclude with illustrative examples.
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1. INTRODUCTION

Semi-classical orthogonal polynomials (O.P) were introduced in [14]. They are
naturel generalization of the classical polynomials (Hermite, Laguerre, Jacobi and
Bessel). Maroni [8, 10] has worked on the linear form of moments and has given
a unified theory of this kind of polynomials. The form u is called semi-classical
form if its formal Stieltjes function S(u)(z) satisfies the Riccati differential equation
Φ(z)S

′
(u)(z) = C0(z)S(u)(z) +D0(z), where Φ 6= 0, C0 and D0 are polynomials.

In [5, 7], the authors determine all the semi-classical monic orthogonal
polynomials sequence (MOPS) of class one satisfying a three terms recurrence
relation with βn = (−1)nτ, n ≥ 0, τ ∈ C− {0}. See also [1] for a special case.
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The whole idea of the following work is to build a new construction process of
semi-classical form, which has not yet been treated in the literature on semi-classical
polynomials. The problem we tackle is as follows.

We study the form u, fulfilling

(x− τ2)σu = −λv, λ 6= 0, (u)2n+1 = τ(u)2n,

where σu is the even part of u, τ ∈ C and v is a given semi-classical form.
This paper is arranged in sections: The first provides a focus on the preliminary

results and notations used in the sequel. We will also give the regularity condition
and the coefficients of the three-term recurrence relation satisfied by the new family
of O.P. In the second, we compute the exact class of the semi-classical form obtained
by the above modification and the structure relation of the O.P. sequence relatively
to the form u will follow. In the final section, we apply our results to some
examples. The regular linear functional found in the examples are semi-classical
linear functional of class s̃ ∈ {1, 2} and we present their integral representations.

Let P be the vector space of polynomials with coefficients in C and let P ′ be its
dual. We denote by 〈v, f〉 the action of v ∈ P ′ on f ∈ P. In particular, we denote
by (v)n := 〈v, xn〉 , n ≥ 0, the moments of v. For any form v and any polynomial h
let Dv = v′, hv, δc, and (x− c)−1v be the forms defined by:

〈v′, f〉 := −〈v, f ′〉 , 〈hv, f〉 := 〈v, hf〉 , 〈δc, f〉 := f(c),

and 〈
(x− c)−1v, f

〉
:= 〈v, θcf〉 ,

where
(
θcf
)
(x) =

f(x)− f(c)

x− c
, c ∈ C, f ∈ P.

Then, it is straightforward to prove that for f ∈ P and v ∈ P ′, we have

(x− c)−1((x− c)v) = v − (v)0δc, (1)

(x− c)((x− c)−1u) = v. (2)

Let us define the operator σ : P −→ P by (σf)(x) := f(x2). Then, we define the
even part σv of v by 〈σv, f〉 := 〈v, σf〉.
Therefore, we have [6, 9]

f(x)(σv) = σ(f(x2)v), (3)

(σv)n = (v)2n, n ≥ 0. (4)

The form v will be called regular if we can associate with it a polynomial sequence
{Sn}n≥0

(
deg(Sn) ≤ n

)
such that

〈v, SnSm〉 = rnδn,m, n,m ≥ 0, rn 6= 0, n ≥ 0.

Then deg(Sn) = n, n ≥ 0, and we can always suppose each Sn monic (i.e. Sn(x) =
xn + · · · ). The sequence {Sn}n≥0 is said to be orthogonal with respect to v. It is
a very well known fact that the sequence {Sn}n≥0 satisfies the recurrence relation(
see, for instance, the monograph by Chihara [6]

)
Sn+2(x) = (x− ξn+1)Sn+1(x)− ρn+1Sn(x), n ≥ 0,

S1(x) = x− ξ0, S0(x) = 1,
(5)
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with
(
ξn, ρn+1

)
∈ C× C− {0}, n ≥ 0, by convention we set ρ0 = (v)0 = 1.

In this case, let {S(1)
n }n≥0 be the associated sequence of first kind for the sequence

{Sn}n≥0 satisfying the three-term recurrence relation [6]

S
(1)
n+2(x) = (x− ξn+2)S

(1)
n+1(x)− ρn+2S

(1)
n (x), n ≥ 0,

S
(1)
1 (x) = x− ξ1, S

(1)
0 (x) = 1,

(
S
(1)
−1(x) = 0

)
.

(6)

Another important representation of S
(1)
n is, (see [6])

S(1)
n (x) :=

〈
v,
Sn+1(x)− Sn+1(ζ)

x− ζ

〉
, n ≥ 0. (7)

Also, let {Sn(., µ)}n≥0 be co-recursive polynomials for the sequence {Sn}n≥0
satisfying [6]

Sn(x, µ) = Sn(x)− µS(1)
n−1, n ≥ 0. (8)

We recall that a form v is called symmetric if (v)2n+1 = 0, n ≥ 0. The conditions
(v)2n+1 = 0, n ≥ 0 are equivalent to the fact the corresponding MOPS {Sn}n≥0
satisfies the recurrence relation (5) with ξn = 0, n ≥ 0 [6].

Now let v be a regular, normalized form (i.e. (v)0 = 1) and {Sn}n≥0 be its
corresponding sequence of polynomials. For a τ ∈ C and λ ∈ C∗, we can define a
new form u as following:

(u)2n+2 − τ2(u)2n = −λ(v)n, (u)2n+1 = τ(u)2n, (u)0 = 1, n ≥ 0. (9)

Equivalently,
(x− τ2)σu = −λv, σ

(
(x− τ)u

)
= 0. (10)

From (1) and (10), we have

σu = −λ(x− τ2)−1v + δτ2 . (11)

Remarks.

i) (10) is equivalent to
(x2 − τ2)u = −λw, (12)

where the form w defined by

σw = v, σ(x− τ)w = 0.

Notice that w is not necessarily a regular form in the problem understudy.
In [2], the authors have solved where w is regular and τ = 0 and in [3], the
problem (12) is solved when τ 6= 0 and w is regular.

ii) The case τ = 0 is treated in [13], so henceforth we assume τ 6= 0.

Proposition 1. The form u is regular if and only if λ 6= λn, n ≥ 0 where

λ0 = 0, λn+1 =
Sn+1(τ2)

S
(1)
n (τ2)

, n ≥ 0. (13)
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To prove the above proposition, we need the following lemma:

Lemma 2. [9] The form u defined by (10) is regular if and only if σu and (x−τ2)σu
are regular.

Proof of Proposition 1. We have u is defined by (10). Then, according to Lemma
2, u is regular if and only if (x− τ2)σu and σu are regular. But (x− τ2)σu = −λv
is regular since λ 6= 0 and v is regular. So u is regular if and only if σu = −λ(x −
τ2)−1σv + δτ2 is regular. Or, {Sn}n≥0 is the corresponding orthogonal sequence to
v, and it was shown in [11] that σu = −λ(x− τ2)−1v + δτ2 is regular if and only if
λ 6= 0, and Sn(τ2, λ) 6= 0, n ≥ 0. Then we deduce the desired result.

When u is regular let {Zn}n≥0 be its corresponding sequence of polynomials
satisfying the recurrence relation

Zn+2(x) = (x− (−1)n+1τ)Zn+1(x)− γn+1Zn(x), n ≥ 0,

Z1(x) = x− τ, Z0(x) = 1.
(14)

Let us consider its quadratic decomposition [6, 9]:

Z2n(x) = Pn(x2), Z2n+1(x) = (x− τ)Rn(x2). (15)

The sequences {Pn}n≥0 and {Rn}n≥0 are respectively orthogonal with respect to
σu and (x− τ2)σu.

From (10), we have
Rn(x) = Sn(x), n ≥ 0. (16)

Proposition 3. We may write

γ1 = −λ, γ2n+2 = an, γ2n+3 =
ρn+1

an
, n ≥ 0, (17)

where

an = −Sn+1(τ2, λ)

Sn(τ2, λ)
, n ≥ 0. (18)

For the proof, we need the following lemma:

Lemma 4. [4] We have

Z
(1)
2n (x) = Rn(x2, λ), Z

(1)
2n+1(x) = (x+ τ)P (1)

n (x2), n ≥ 0. (19)

Proof of Proposition 3. Using (10) and the condition 〈u, Z2〉 = 0, we obtain
γ1 = −λ.

From (6) and (14) where n −→ 2n and taking (16) and (19) into account, we get

Sn+1

(
x2,−γ1

)
= (x− τ)Z

(1)
2n+1(x)− γ2n+2Sn

(
x2,−γ1

)
.

Substituting x by τ in the above equation, we obtain γ2n+2 = an.
From (14), we have

γ2n+2γ2n+3 =

〈
u, Z2

2n+2

〉〈
u, Z2

2n+1

〉 〈u, Z2
2n+3

〉〈
u, Z2

2n+2

〉 =

〈
u, Z2

2n+3

〉〈
u, Z2

2n+1

〉 . (20)

Using (5), (10) and (15)− (16), Equation (20) becomes

γ2n+2γ2n+3 = ρn+1, (21)

then we deduce γ2n+3 =
ρn+1

an
.
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We suppose that the form v has the following integral representation:

〈v, f〉 =

∫ +∞

0

V (x)f(x)dx, f ∈ P,with (v)0 = 〈v, f〉 =

∫ +∞

0

V (x)dx,

where V is a locally integrable function with rapid decay and continuous at the
point x = τ2.

It is obvious that

f(x) = fe(x2) + xfo(x2), f ∈ P.

Therefore,

〈u, f(x)〉 = 〈u, fe(x2) + τfo(x2)〉 = 〈σu, fe(x) + τfo(x)〉,

since u satisfies (10).

Using (11) and taking into account that fe(τ2) + τfo(τ2) = f(τ), we obtain

〈u, f〉 = f(τ)
{

1+λP

∫ +∞

−∞

V (x)

x− τ2
χ[0,+∞[(x)dx

}
−λP

∫ +∞

−∞

V (x)

x− τ2
χ[0,+∞[(x)(fe + τfo)(x)dx,

(22)

where

P

∫ +∞

−∞

V (x)

x− τ2
f(x) = lim

ε→0

{∫ τ2−ε

−∞

V (x)

x− τ2
f(x)dx+

∫ +∞

τ2+ε

V (x)

x− τ2
f(x)dx

}
and χ[a,b] denotes the characteristic function of the interval [a, b], i.e. χ[a,b](x) = 1
when x ∈ [a, b] and zero otherwise.

Using the fact that fe(x) = f(
√
x)+f(−

√
x)

2 and fo(x) = f(
√
x)−f(−

√
x)

2
√
x

for x > 0

and making the change of variables t =
√
x, we get

P

∫ +∞

−∞

V (x)

x− τ2
χ[0,+∞[(x)(fe + τfo)(x)dx =P

∫ +∞

−∞

V (t2)

t− τ
χ[0,+∞[(t)f(t)dt

+P

∫ +∞

−∞

V (t2)

t+ τ
χ[0,+∞[(t)f(−t)dt.

Inserting the last equation into (22), we get after a change variables in the obtained
equation

〈u, f〉 = f(τ)
{

1+λP

∫ +∞

−∞

V (t)

t− τ2
χ[0,+∞[(t)dt

}
+λP

∫ +∞

−∞

V (t2)

t− τ
χ]−∞,0](t)f(t)dt

−λP
∫ +∞

−∞

V (t2)

t− τ
χ[0,+∞[(t)f(t)dt.

(23)
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2. THE SEMI-CLASSICAL CASE

Let us recall that a form v is called semi-classical when it is regular and satisfies a
linear non-homogeneous differential equation [10]

Φ(z)S′
(
v
)
(z) = C0(z)S

(
v
)
(z) +D0(z), (24)

where Φ monic, C0 and D0 are polynomials with

S(v)(z) = −
∑
n≥0

(v)n
zn+1

, (25)

and

D0(x) = −
(
vθ0Φ

)′
(x) +

(
vθ0C0

)
(x). (26)

It was shown in [10] that equation (24) is equivalent to(
Φ(x)v

)′
+ Ψ(x)v = 0 (27)

with

Ψ(x) = −Φ′(x)− C0(x). (28)

The triple (Φ, C0, D0) of the differential equation is not unique, then (24) can
simplified if and only if there exists a root c of Φ such that C0(c) = 0 and D0(c) = 0.
Then v fulfils the differential equation

(θcΦ)(z)S′
(
v
)
(z) = (θcC0)(z)S

(
v
)
(z) + (θcD0)(z).

We call the class of the linear form v, the minimum value of the integer
max

(
deg(Φ)− 2,deg(C0)− 1

)
for all triples satisfying (24).

The class of the semi-classical form v is s = max
(
deg(Φ)− 2,deg(C0)− 1

)
if and

only if the following condition is satisfied [8]∏
c∈Z

(|C0(c)|+ |D0(c)|) 6= 0, (29)

where Z denotes the set of zeros of Φ.
The corresponding orthogonal sequence {Sn}n≥0 is also called semi-classical of

class s.
The semi-classical character is invariant by shifting. Indeed, the shifted form

v̂ = (ha−1ot−b)v, a ∈ C− {0}, b ∈ C satisfies

Φ̂(z)S′
(
v̂
)
(z) = Ĉ0(z)S

(
v̂
)
(z) + D̂0(z), (30)

with
Φ̂(z) = a−kΦ(az + b), Ĉ0(z) = a1−kC0(az + b),

D̂0(z) = a2−kD0(az + b), k = deg(Φ).

The forms tbv (translation of v) and hav (dilation of v) are defined by

〈tbv, f〉 := 〈v, f(x+ b)〉, 〈hav, f〉 := 〈v, f(ax)〉, f ∈ P.
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The sequence {Ŝn(x) = a−nSn(ax + b)}n≥0 is orthogonal with respect to v̂ and
fulfils (5) with

ξ̂n =
ξn − b
a

, ρ̂n+1 =
ρn+1

a2
, n ≥ 0. (31)

In the sequel the form v will be supposed semi-classical linear form of class s
satisfying (24) and (27) and using a dilation in the variable τ , we can take him
equal to one.

Proposition 5. For every λ ∈ C − {0} such that Sn(1, λ) 6= 0, n ≥ 0, the form u
defined by (10) is regular and semi-classical. It satisfies

Φ̃(z)S′
(
u
)
(z) = C̃0(z)S

(
u
)
(z) + D̃0(z), (32)

where 
Φ̃(z) = (z − 1)Φ(z2),

C̃0(z) = 2z(z − 1)C0(z2)− Φ(z2),

D̃0(z) = −2z
(
λD0(z2)− C0(z2)

)
,

(33)

and u is of class s̃ such that s̃ ≤ 2s+ 3.

Proof. From (10) and (25), we have

S
(
v
)
(z2) = −λ−1(z − 1)S

(
u
)
(z)− λ−1. (34)

Make a change of variable z −→ z2 in (24), multiply by −2λz and substitute
(34) in the obtained equation, we get (32)− (33).

Then, deg(Φ̃) ≤ 2s+ 5 and deg(C̃0) ≤ 2s+ 4.

Thus, s̃ = max(deg(Φ̃)− 2,deg(C̃0)− 1) ≤ 2s+ 3.

As an immediate consequence of (32)− (33), the form u satisfies the functional
equation

(Φ̃u)
′
+ Ψ̃u = 0, (35)

where Φ̃ is the polynomial defined by (33) and

Ψ̃(x) = −Φ̃
′
(x)− C̃0(x) = 2x(x− 1)Ψ(x2). (36)

Proposition 6. The class of u depends only on the zeros x = 0 and x = 1 of Φ̃.

Proof. Since v is a semi-classical form of class s, S(v)(z) satisfies (24), where the
polynomials Φ, C0 and D0 are coprime. Let Φ̃, C̃0 and D̃0 be as in Proposition 5.
Let d be a zero of Φ̃ different from 0 and 1, this implies that Φ(d2) = 0. We know
that |C0(d2)|+ |D0(d2)| 6= 0

i) if C0(d2) 6= 0, then C̃0(d) 6= 0,

ii) if C0(d2) = 0, then D̃0(d) 6= 0, whence |C̃0(d)|+ |D̃0(d)| 6= 0.

Concerning the class of u, we have the following result (see Proposition 8). But
first, let us this technical lemma.
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Lemma 7. Let X(z) = C0(z) − λD0(z) and Y (z) = C0(z) − Φ
′
(z), where the

polynomials Φ, C0 and D0 are defined in (24). We have the following properties.

R1. The equation (32)− (33) is irreducible in 0 if and only if Φ(0) 6= 0.

R2. The equation (32)− (33) is divisible by z but not by z2 if and only if Φ(0) = 0.

R3. The equation (32)− (33) is irreducible in 1 if and only if

(Φ(1), X(1)) 6= (0, 0).

R4. The equation (32)− (33) is divisible by z − 1 and not by (z − 1)2 if and only if

(Φ(1), X(1)) = (0, 0) and (X
′
(1), Y (1)) 6= (0, 0).

R5. The equation (32)−(33) is divisible by (z−1)2 and not by (z−1)3 if and only if

(Φ(1), X(1)) = (X
′
(1), Y (1)) = (0, 0).

Proof. From (33), we have Φ̃(0) = −Φ(0). So by virtue of (29), we get R1.
Now, if Φ(0) = 0, the equation (32) − (33) is divisible by z according to (29).

Thus S(u)(z) satisfies (32) with
Φ̃(z) = z(z − 1)(θ0Φ)(z2),

C̃0(z) = 2(z − 1)C0(z2)− z(θ0Φ)(z2),

D̃0(z) = 2C0(z2)− 2λD0(z2).

(37)

Then, C̃0(0) = −C0(0). If C0(0) = 0, thus the equation (32) − (37) is irreducible
in 0. If C0(0) = 0, so from (37), we obtain D̃0(0) = −2λD0(0) 6= 0 since v is
semi-classical form of class s and so satisfies (29). Therefore, we deduce R2.

From (33), we get C̃0(1) = −Φ(1) and D̃0(1) = 2X(1).
We can deduce that |C̃0(1)|+ |D̃0(1)| 6= 0 if and only if (Φ(1), X(1)) 6= (0, 0). Thus
R3 is proved.

If (Φ(1), X(1)) = (0, 0), then the equation (32) − (33) can be divided by z − 1
according to (29). In this case, S(u)(z) satisfies (32) with

Φ̃(z) = Φ(z2),

C̃0(z) = 2zC0(z2)− (z + 1)(θ1Φ)(z2),

D̃0(z) = 2C0(z2)− 2λD0(z2) + 2(z + 1)
(
θ1(C0 − λD0)

)
(z2).

(38)

Substituting z by 1 in (38), we obtain C̃0(1) = Y (1) and D̃0(1) = X
′
(1). Then

(32)− (38) is irreducible in 1 if and only if (X
′
(1), Y (1)) 6= (0, 0). Hence R4.

If (X
′
(1), Y (1)) 6= (0, 0), then the equation (32)− (38) can be divided by z − 1

according to (29). Therefore S(u)(z) satisfies (32) with
Φ̃(z) = (z + 1)(θ1Φ)(z2),

C̃0(z) = 2C0(z2) + 2(z + 1)
(
θ1
(
C0 − θ1Φ

))
(z2)− (θ1Φ)(z2),

D̃0(z) = −2(z + 2)
(
θ1(λD0 − C0)

)
(z2)− 4

(
θ21(λD0 − C0)

)
(z2).

(39)

From the above equation, we have Φ̃(1) = 2Φ
′
(1) = 0. If Φ

′
(1) = 0, then from

the condition Y (1) = 0 we obtain C0(1) = 0. Thus from the last result and the
condition X(1) = 0, we get D0(1) = 0. Impossible, since v is semi-classical form of
class s and so satisfies (29). Thus R5 is proved.
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Proposition 8. Under the conditions of Proposition 5, for the class of u, we have
the two different cases:

1) Φ(0) 6= 0.

i) s̃ = 2s+ 3 if (Φ(1), X(1)) 6= (0, 0).

ii) s̃ = 2s+ 2 if (Φ(1), X(1)) = (0, 0) and (Y (1), X
′
(1)) 6= (0, 0).

iii) s̃ = 2s+ 1 if (Φ(1), X(1)) = (Y (1), X
′
(1)) = (0, 0).

2) Φ(0) = 0.

i) s̃ = 2s+ 2 if (Φ(1), X(1)) 6= (0, 0).

ii) s̃ = 2s+ 1 if (Φ(1), X(1)) = (0, 0) and (Y (1), X
′
(1)) 6= (0, 0).

iii) s̃ = 2s if (Φ(1), X(1)) = (Y (1), X
′
(1)) = (0, 0).

Proof. From Proposition 6, the class of u depends only on the zeros 0 and 1.
For the zero 0 we consider the following situations:

A) Φ(0) 6= 0. In this case the equation (32) − (33) is irreducible in 0 according
to R1. But what about the zero 1?

We will analyze the following cases:

i) (Φ(1), X(1)) 6= (0, 0), the equation (32)−(33) is irreducible in 1 according
to R3. Then (32) − (33) is irreducible and s̃ = 2s + 3. Thus we proved
1) i).

ii) (Φ(1), X(1)) = (0, 0) and (Y (1), X
′
(1)) 6= (0, 0).

From R4., (32) − (33) is divisible by z − 1 but not by (z − 1)2 and thus the
order of the class of u decreases in one unit. In fact, S(u)(z) satisfies the
irreducible equation (32)− (38) and then s̃ = 2s+ 2 and 1) ii) is also proved.

iii) (Φ(1), X(1)) = (Y (1), X
′
(1)) = (0, 0).

From R5., (32) − (33) is divisible by (z − 1)2 but not by (z − 1)3 and thus
the order of the class of u decreases in two units. In fact, S(u)(z) satisfies the
irreducible equation (32)− (39) and then s̃ = 2s+ 1. Thus 1) iii) is proved.

B) Φ(0) 6= 0. In this condition, (32)−(33) is divisible by z but not by z2 according
to R2. But what about the zero 1?

We have the three following cases:

i) (Φ(1), X(1)) 6= (0, 0), the equation (32)−(33) is irreducible in 1 according
to R3. Then S(u)(z) satisfies the irreducible equation (32) − (37) and
then s̃ = 2s+ 2. Thus we proved 2) i).

ii) (Φ(1), X(1)) = (0, 0) and (Y (1), X
′
(1)) 6= (0, 0).

From R4., (32) − (33) is divisible by z − 1 but not by (z − 1)2 and thus the
order of the class of u decreases in one unit. In fact, S(u)(z) satisfies the
irreducible Equation (32) with

Φ̃(z) = z(θ0Φ)(z2),

C̃0(z) = 2C0(z2)− (θ0Φ)(z2)− (z + 1)(θ0θ1Φ)(z2),

D̃0(z) = −2(z + 1)
(
θ1(λD0 − C0)

)
(z2).

(40)
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Thus s̃ = 2s+ 1 and 2) ii) is proved.

iii) (Φ(1), X(1)) = (Y (1), X
′
(1)) = (0, 0).

From R5., (32)− (33) is divisible by (z− 1)2 but not by (z− 1)3. So, S(u)(z)
satisfies the irreducible Equation (32) with

Φ̃(z) = (z + 1)(θ0θ1Φ)(z2) + (θ0Φ)(z2),

C̃0(z) = 2(z + 1)
(
θ1
(
C0 − θ0θ1Φ

))
(z2)− (z + 2)(θ0θ1Φ)(z2),

D̃0(z) = −2
(
θ1(λD0 − C0)

)
(z2)− 4(z + 1)

(
θ21(λD0 − C0)

)
(z2).

(41)

Therefore s̃ = 2s and 2) iii) is also proved.

Note that the sequence of orthogonal polynomials (OPS) relatively to a semi-
classical form has a structure relation (written in a compact form)[10]. Then, if
we consider that the form v is semi-classical, its OPS {Sn}n≥0 fulfils the following
structure relation:

Φ(x)S′n+1(x) =
1

2

(
Cn+1(x)− C0(x)

)
Sn+1(x)− ρn+1Dn+1(x)Sn(x), n ≥ 0, (42)

with 
Cn+1(x) = −Cn(x) + 2(x− ξn)Dn(x), n ≥ 0,

ρn+1Dn+1(x) = −Φ(x) + ρnDn−1(x)− (x− ξn)Cn(x)

+ (x− ξn)2Dn(x), n ≥ 0,

(43)

where Φ , C0(x) and D0(x) are the same polynomials as in (24); ξn, ρn are the
coefficients of the three term recurrence relation (5). Notice that D−1(x) =
0,degCn ≤ s+ 1 and degDn ≤ s, n ≥ 0 [10].

According to Proposition 5, the form u is also semi-classical and its OPS {Zn}n≥0
satisfies a structure relation. In general, {Zn}n≥0 fulfils

Φ̃(x)Z ′n+1(x) =
1

2

(
C̃n+1(x)− C̃0(x)

)
Zn+1(x)− γn+1D̃n+1(x)Zn(x), n ≥ 0, (44)

with 
C̃n+1(x) = −C̃n(x) + 2(x− (−1)n)D̃n(x), n ≥ 0,

γn+1D̃n+1(x) = −Φ̃(x) + γnD̃n−1(x)− (x− (−1)n)C̃n(x)

+ (x− (−1)n)2D̃n(x), n ≥ 0,

(45)

where Φ̃ , C̃0(x) and D̃0(x) are the same polynomials as in Equation (32).
We are going to establish the expression of C̃n and D̃n , n ≥ 0 in terms of those

of the sequence {Sn}n≥0.

Proposition 9. The sequence {Zn}n≥0 fulfils (44) with (for n ≥ 0){
C̃2n+1(x) = Φ(x2) + 2x(x− 1)Cn(x2) + 4γ2n+1x(x− 1)Dn(x2),

D̃2n+1(x) = 2x(x− 1)2Dn(x2).
(46){

C̃2n+2(x) = −Φ(x2) + 2x(x− 1)Cn+1(x2) + 4x(x− 1)γ2n+2Dn(x2),

D̃2n+2(x) = 2xγ2n+2Dn(x2) + 2xγ2n+3Dn+1(x2) + 2xCn+1(x2).
(47)
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C̃0(x) and D̃0(x) are given by (33) and γn+1 by (17).

Proof. Change x −→ x2, n −→ n− 1 in (42) and multiply by 2x(x− 1)2 we obtain
by taking (15)− (16) into account,

(x− 1)Φ(x)Z
′

2n+3(x) =

{
x(x− 1)

(
Cn+1(x2)− C0(x2)

)
+ Φ(x2)

}
Z2n+3(x)

− 2ρn+1x(x− 1)Dn+1(x2)Z2n+1(x), n ≥ 0.

Using (14) and (21) where n −→ 2n, the last equation becomes

Φ̃(x)Z
′

2n+3(x) =

{
x(x− 1)

(
Cn+1(x2)− C0(x2) + 2x(x− 1)γ2n+3Dn+1(x2)

)

+ Φ(x2)

}
Z2n+3(x)− 2γ2n+3x(x− 1)2Dn+1(x2)Z2n+2(x), n ≥ 0.

From (44) and the above equation, we have for n ≥ 0{
C̃2n+3(x)− C̃0(x)

2
−Xn+1(x)

}
Z2n+3(x) = γ2n+3

{
D̃2n+3 − Yn+1(x)

}
Z2n+2(x),

with for n ≥ 0{
Xn(x) =

(
Cn(x2)− C0(x2) + 2γ2n+1Dn(x2)

)
x(x− 1) + Φ(x2),

Yn(x) = 2x(x− 1)2Dn(x2).

Z2n+3 and Z2n+2 have no common zeros, then Z2n+3 divides Yn+1(x)− D̃2n+3(x),
which is a polynomial of degree at most equal to 2s+ 3. Then we have necessarily
Yn+1(x)− D̃2n+3(x) = 0 for n > s, and also

Xn(x) =
C̃2n+1(x)− C̃0(x)

2
, n > s.

Therefore,

C̃2n+3(x) = 2Xn+1(x) + C̃0(x) and D̃2n+3 = Yn+1(x), n > s.

Then, by (33), we get (46) for n > s.
By virtue of the recurrence relation (43) and (33), we can easily prove by

induction that the system (46) is valid for 0 ≤ n ≤ s. Hence (46) is valid for
n ≥ 0.

After a derivation of (14) where n → 2n + 1 multiplying by (x − 1)Φ(x2) and
using (44), we obtain

(x− 1)2Φ(x2)Z
′
2n+2(x) =

C̃2n+3(x)− C̃0(x)

2
Z2n+3(x)

− γ2n+3D̃2n+3(x)Z2n+2(x)− (x− 1)Φ(x2)Z2n+2(x)

+ γ2n+2

{ C̃2n+1(x)− C̃0(x)

2
Z2n+1(x)− γ2n+1D̃2n+1(x)Z2n(x)

}
.
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Applying the recurrence relation (14), we get

(x− 1)2Φ(x2)Z
′
2n+2(x) =

{
(x− 1)

C̃2n+3(x)− C̃0(x)

2
+ γ2n+2D̃2n+1(x)

− γ2n+3D̃2n+3(x)− (x− 1)Φ(x2)
}
Z2n+2(x)

− γ2n+2

{ C̃2n+3(x)− C̃2n+1(x)

2
+ (x+ 1)D̃2n+1(x)

}
Z2n+1(x).

Now, using (44) and taking into account the fact that Z2n+2(x) and Z2n+1(x) are
coprime, we get from the last equation after simplification by x− 1 (47) for n > s.
Finally, by virtu of the recurrence relation (43) and (46) with n = 0, we can easily
prove by induction that the system (47) is valid for 0 ≤ n ≤ s.

3. ILLUSTRATIVE EXAMPLES

(1) We study the problem (10), with v := L(α) where L(α) is the Laguerre form.
This form has the following integral representation [10]

〈v, f〉 =
1

Γ(α + 1)

∫ +∞

0

xαe−xf(x)dx, R(α) > −1, f ∈ P. (48)

Thus, using (23), we obtain the following integral representation of u

〈u, f〉 = f(1)
{

1 + λP

∫ +∞

−∞

xαe−x

x− 1
χ[0,+∞[(x)dx

}
+ λ

∫ 0

−∞

x2αe−x
2

x− 1
f(x)dx− λP

∫ +∞

−∞

x2αe−x
2

x− 1
χ[0,+∞[(x)f(x)dx.

(49)

The form v is classical (semi-classical of class s = 0), it satisfies (24) and (27)
with [10] {

Φ(x) = x, Ψ(x) = x− α− 1,

Cn(x) = −x+ 2n+ α, Dn(x) = −1, n ≥ 0.
(50)

The sequence {Sn}n≥0 fulfils (5) with [6]

ξn = 2n+ α + 1, ρn+1 = (n+ 1)(n+ α + 1), n ≥ 0. (51)

The regularity condition is α 6= −n, n ≥ 1.
First, we study the regularity of the form u.
From (7) and (2.11) in [6], we have for n ≥ 0

Sn(1) = (−1)n
n∑
k=0

(−1)kΓ(n+ 1)Γ(n+ α + 1)

Γ(k + 1)Γ(n− k + 1)Γ(α + k + 1)
, (52)

and

S(1)
n (1) = (−1)n+1

n+1∑
k=0

(−1)kΓ(n+ 2)Γ(n+ α + 2)

Γ(k + 1)Γ(n− k + 1)Γ(α + k + 1)
bk−1(α), (53)

where

bn(α) =

n∑
k=0

Γ(α + k + 1)

Γ(α + 1)
, b−1(α) = 0.
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By virtue of (8) and (52)− (53), we deduce

Sn(1, λ) = (−1)nΓ(n+ 1)Γ(n+ α + 1)cn(α, λ), n ≥ 0, (54)

where

cn(α, λ) =

n∑
k=0

(−1)k(1− λbk−1)(α)

Γ(k + 1)Γ(n− k + 1)Γ(α + k + 1)
, n ≥ 0.

Then, u is regular for every λ 6= 0 such that cn(α, λ) 6= 0, n ≥ 0.
(18) and (54) give

an = (n+ 1)(n+ α + 1)
cn+1(α, λ)

cn(α, λ)
, n ≥ 0. (55)

Therefore, with (17), we obtain for n ≥ 0

γ1 = −λ,

γ2n+2 = (n+ 1)(n+ α + 1)
cn+1(α, λ)

cn(α, λ)
,

γ2n+3 =
cn(α, λ)

cn+1(α, λ)
.

(56)

Taking into account that the form v is semi-classical and by virtue of Proposition
5, Proposition 8 and (50), the form u is semi-classical of class s̃ = 2 and fulfils (32)
and (35) with{

Φ̃(x) = x(x− 1), Ψ̃(x) = (x− 1)(2x2 − 2α− 1),

C̃0(x) = −2x3 + 2x2 + (2α− 1)x− 2α, D̃0(x) = 2(−x2 + α + λ).
(57)

Now, we are going the elements of the structure relation of the sequence {Zn}n≥0.

C̃0(x) = −2x3 + 2x2 + (2α− 1)x− 2α,

C̃1(x) = 2(x− 1)(−x2 + α + 2λ) + x,

C̃2n+2(x) = 2(x− 1)

(
− x2 + 2n+ α + 2− 2(n+ 1)(n+ α + 1)

cn+1(α, λ)

cn(α, λ)

)
− x,

C̃2n+3(x) = 2(x− 1)

(
− x2 + 2n+ α + 2− 2

cn(α, λ)

cn+1(α, λ)

)
− x,

D̃0(x) = 2(−x2 + α + λ),

D̃2n+1(x) = −2(x− 1)2,

D̃2n+2 = −2x2 + 2

(
n+ α + 1− (n+ 1)(n+ α + 1)

cn+1(α, λ)

cn(α, λ)
− cn(α, λ)

cn+1(α, λ)

)
.

(2) We study the problem (10), with v := h 1
2
oτ1J (α, β) where J (α, β) is the Jacobi

form. This form has the following integral representation [10]

〈v, f〉 =
Γ(α + β + 2)

Γ(α + 1)Γ(β + 1)

∫ 1

0

xα(1− x)βf(x)dx, R(α), R(β) > −1, f ∈ P. (58)
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Thus, using (23), we obtain the following integral representation of u

〈u, f〉 = λ
Γ(α + β + 2)

Γ(α + 1)Γ(β + 1)

∫ 1

−1
sgnx|x|2α(1− x2)β−1(x+ 1)f(x)dx

+ (1− λ
α + β + 1

β
)f(1), R(α) > −1, R(β) > 0, f ∈ P.

(59)

The form v is classical, it satisfies (24) and (27) with [10]
Φ(x) = x(x− 1), Ψ(x) = −(α + β + 2)x+ α + 1,

Cn(x) = (2n+ α + β)x− n− (n+ α)(α + β)

2n+ α + β
,

Dn(x) = 2n+ α + β + 1, n ≥ 0.

(60)

The sequence {Sn}n≥0 fulfils (5) with [6]ξ0 = α+1
α+β+2 , ξn+1 = 1

2 ( β2−α2

(2n+α+β+2)(2n+α+β+4) + 1), n ≥ 0,

ρn+1 = (n+1)(n+α+1)(n+β+1)(n+α+β+1)
(2n+α+β+1)(2n+α+β+2)2(2n+α+β+3) , n ≥ 0.

(61)

The regularity conditions are α , β 6= −n , α + β 6= −n , n ≥ 1.
Using (5) and (61), we get

Sn(1) =
Γ(β + n+ 1)Γ(α + β + n+ 1)

Γ(β + 1)Γ(α + β + 2n+ 1)
, n ≥ 0. (62)

From (6) and (61), we obtain by induction

S(1)
n (1) =

(α + β + 1)

Γ(α + β + 2n+ 3)
dn(α, β), n ≥ 0, (63)

where for n ≥ 0

dn(α, β)=


1

α

(Γ(α + n+ 2)Γ(α + β + n+ 2)

Γ(α + 1)
−Γ(α + β + 1)Γ(n+ 1)Γ(β + n+ 2)

Γ(β + 1)

)
,α 6= 0,

Γ(n+ 1)Γ(n+ β + 2)

n∑
k=0

(
1

k + 1
+

1

β + k + 1
), α = 0.

By virtue of (8) and (62)− (63), we deduce

Sn(1, λ) =
Γ(β + n+ 1)Γ(α + β + n+ 1)

Γ(β + 1)Γ(α + β + 2n+ 1)
en(λ,α, β), n ≥ 0. (64)

where for n ≥ 0

en(λ,α, β) = 1− λ
(α + β + 1)Γ(β + 1)

Γ(β + n+ 1)Γ(n+ α + β + 1)
dn−1(α, β), d−1(α, β) = 0.

Then, u is regular for every λ 6= 0 such that

λ 6=
( (α + β + 1)Γ(β + 1)

Γ(β + n+ 1)Γ(n+ α + β + 1)
dn−1(α, β)

)−1
, n ≥ 1. (65)
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(18) and (64) give

an = − (β + n+ 1)(α + β + n+ 1)

(α + β + 2n+ 1)(α + β + 2n+ 2)

en+1(λ,α, β)

en(λ,α, β)
, n ≥ 0. (66)

Then,with (17), we obtain for n ≥ 0

γ1 = −λ,

γ2n+2 = − (β + n+ 1)(α + β + n+ 1)

(α + β + 2n+ 1)(α + β + 2n+ 2)

en+1(λ,α, β)

en(λ,α, β)
,

γ2n+3 = − (n+ 1)(α + n+ 1)

(α + β + 2n+ 2)(α + β + 2n+ 3)

en(λ,α, β)

en+1(λ,α, β)
.

(67)

Taking into account that the form v is classical and by virtue of Proposition 5, the
form u is also semi-classical. It satisfies (32) and (35) with

Φ̃(x) = x(x− 1)(x2 − 1),

Ψ̃(x) = (x− 1)

(
(2α + 2β − 3)x2 + 2α + 1

)
,

C̃0(x) = −(x− 1)

(
(2α + 2β + 1)x2 + x+ 2α

)
,

D̃0(x) = 2(α + β)x2 − 2α− 2λ(α + β + 1).

(68)

From (60), we have
Φ(0) = 0, Φ(1) = 0,

X(1) = β − λ(α + β + 1), X
′
(1) = α + β,

Y (1) = β − 1.

Now it is enough to use Proposition 8 in order to obtain the following results:

(i) If λ satisfies (65) and λ 6= β
α+β+1 , then the class of u is s̃ = 2.

(ii) If λ = β
α+β+1 , then the class of u is s̃ = 1 since (X

′
(1), Y (1)) 6= (0, 0).

Remarks.

(i) The semi-classical orthogonal polynomials of class one satisfies (14) have been
described in [5, 7].

(ii) If λ = β
α+β+1 , then from (59), we get for R(α) > −1, R(β) > 0

〈u, f〉 =
Γ(α + β + 1)

Γ(α + 1)Γ(β)

∫ 1

−1
sgn x|x|2α(1− x2)β−1(x+ 1)f(x)dx. (69)

This result exist in [7, 12].
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According to Proposition 9, (60) and (67), we have, for n ≥ 0

C̃0(x) = −(x− 1)

(
(2α + 2β + 1)x2 + x+ 2α

)
,

C̃1(x) = (x− 1)

(
(2α + 2β + 1)x2 − x− 2α− 4λ(α + β + 1)

)
,

C̃2n+2(x) = (x− 1)

(
(4n+ 2α + 2β + 3)x2 + x− 2n− 2

− 2
(n+ α + 1)(α + β)

2n+ α + β + 2
− 4

(β + n+ 1)(α + β + n+ 1)

(α + β + 2n+ 2)

en+1(λ,α, β)

en(λ,α, β)

)
,

C̃2n+3(x) = (x− 1)

(
(4n+ 2α + 2β + 5)x2 − x− 2n− 2

− 2
(n+ α + 1)(α + β)

2n+ α + β + 2
− 4

(n+ 1)(α + n+ 1)

(α + β + 2n+ 2)

en(λ,α, β)

en+1(λ,α, β)

)
,

D̃0(x) = 2(α + β)x2 − 2α− 2λ(α + β + 1),

D̃2n+1(x) = 2(x− 1)2(α + β + 2n+ 1),

D̃2n+2 = 2

(
(2n+ α + β + 2)x2 − n− 1− (n+ α + 1)(α +−β)

2n+ α + β + 2

)
− 2

(β + n+ 1)(α + β + n+ 1)

(α + β + 2n+ 2)

en+1(λ,α, β)

en(λ,α, β)

− 2
(n+ 1)(α + n+ 1)

(α + β + 2n+ 2)

en(λ,α, β)

en+1(λ,α, β)
.
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orthogonaux. I, Rivista di Mat. Pura ed Appl., 6, 19–53.
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