A Class of Non-Symmetric Semi-Classical Linear Forms

Zaatra Mohamed ${ }^{[\mathrm{a}], *}$
${ }^{[a]}$ Algèbre de Lie et Fonction speciale University/Institution, Sfax.
* Corresponding author.
Address: Institut Supèrieur de Gestion de Gabès Av. Habib Jilani - Gabès - 6002, Tunisia; E-Mail: medzaatra@yahoo.fr

Received: September 14, 2013 / Accepted: December 15, 2013 / Published online: January 24, 2014

Abstract

We show that if v is a regular semi-classical form (linear functional), then the form u defined by $\left(x-\tau^{2}\right) \sigma u=-\lambda v$ and $\sigma(x-\tau) u=0$ where σu is the even part of u, is also regular and semi-classical form for every complex λ except for a discrete set of numbers depending on v. We give explicitly the recurrence coefficients and the structure relation coefficients of the orthogonal polynomials sequence associated with u and the class of the form u knowing that of v. We conclude with illustrative examples.

Key words: Orthogonal polynomials; Semi-classical linear forms; Integral representation; Structure relation

Mohamed, Z. (2014). A Class of Non-Symmetric Semi-Classical Linear Forms. Progress in Applied Mathematics, 7(1), 48-64. Available from: URL: http://www.cscanada.net/ index.php/pam/article/. DOI: http://dx.doi.org/10.3968/4630

1. INTRODUCTION

Semi-classical orthogonal polynomials (O.P) were introduced in [14]. They are naturel generalization of the classical polynomials (Hermite, Laguerre, Jacobi and Bessel). Maroni $[8,10]$ has worked on the linear form of moments and has given a unified theory of this kind of polynomials. The form u is called semi-classical form if its formal Stieltjes function $S(u)(z)$ satisfies the Riccati differential equation $\Phi(z) S^{\prime}(u)(z)=C_{0}(z) S(u)(z)+D_{0}(z)$, where $\Phi \neq 0, C_{0}$ and D_{0} are polynomials.

In $[5,7]$, the authors determine all the semi-classical monic orthogonal polynomials sequence (MOPS) of class one satisfying a three terms recurrence relation with $\beta_{n}=(-1)^{n} \tau, n \geq 0, \tau \in \mathbb{C}-\{0\}$. See also [1] for a special case.

The whole idea of the following work is to build a new construction process of semi-classical form, which has not yet been treated in the literature on semi-classical polynomials. The problem we tackle is as follows.

We study the form u, fulfilling

$$
\left(x-\tau^{2}\right) \sigma u=-\lambda v, \quad \lambda \neq 0, \quad(u)_{2 n+1}=\tau(u)_{2 n}
$$

where σu is the even part of $u, \tau \in \mathbb{C}$ and v is a given semi-classical form.
This paper is arranged in sections: The first provides a focus on the preliminary results and notations used in the sequel. We will also give the regularity condition and the coefficients of the three-term recurrence relation satisfied by the new family of O.P. In the second, we compute the exact class of the semi-classical form obtained by the above modification and the structure relation of the O.P. sequence relatively to the form u will follow. In the final section, we apply our results to some examples. The regular linear functional found in the examples are semi-classical linear functional of class $\tilde{s} \in\{1,2\}$ and we present their integral representations.

Let \mathcal{P} be the vector space of polynomials with coefficients in \mathbb{C} and let \mathcal{P}^{\prime} be its dual. We denote by $\langle v, f\rangle$ the action of $v \in \mathcal{P}^{\prime}$ on $f \in \mathcal{P}$. In particular, we denote by $(v)_{n}:=\left\langle v, x^{n}\right\rangle, n \geq 0$, the moments of v. For any form v and any polynomial h let $D v=v^{\prime}, h v, \delta_{c}$, and $(x-c)^{-1} v$ be the forms defined by:

$$
\left\langle v^{\prime}, f\right\rangle:=-\left\langle v, f^{\prime}\right\rangle, \quad\langle h v, f\rangle:=\langle v, h f\rangle, \quad\left\langle\delta_{c}, f\right\rangle:=f(c),
$$

and

$$
\left\langle(x-c)^{-1} v, f\right\rangle:=\left\langle v, \theta_{c} f\right\rangle
$$

where $\left(\theta_{c} f\right)(x)=\frac{f(x)-f(c)}{x-c}, c \in \mathbb{C}, f \in \mathcal{P}$.
Then, it is straightforward to prove that for $f \in \mathcal{P}$ and $v \in \mathcal{P}^{\prime}$, we have

$$
\begin{align*}
& (x-c)^{-1}((x-c) v)=v-(v)_{0} \delta_{c}, \tag{1}\\
& (x-c)\left((x-c)^{-1} u\right)=v . \tag{2}
\end{align*}
$$

Let us define the operator $\sigma: \mathcal{P} \longrightarrow \mathcal{P}$ by $(\sigma f)(x):=f\left(x^{2}\right)$. Then, we define the even part σv of v by $\langle\sigma v, f\rangle:=\langle v, \sigma f\rangle$.
Therefore, we have $[6,9]$

$$
\begin{align*}
f(x)(\sigma v) & =\sigma\left(f\left(x^{2}\right) v\right), \tag{3}\\
(\sigma v)_{n} & =(v)_{2 n}, \quad n \geq 0 . \tag{4}
\end{align*}
$$

The form v will be called regular if we can associate with it a polynomial sequence $\left\{S_{n}\right\}_{n \geq 0}\left(\operatorname{deg}\left(S_{n}\right) \leq n\right)$ such that

$$
\left\langle v, S_{n} S_{m}\right\rangle=r_{n} \delta_{n, m}, \quad n, m \geq 0, \quad r_{n} \neq 0, \quad n \geq 0
$$

Then $\operatorname{deg}\left(S_{n}\right)=n, \quad n \geq 0$, and we can always suppose each S_{n} monic (i.e. $S_{n}(x)=$ $\left.x^{n}+\cdots\right)$. The sequence $\left\{S_{n}\right\}_{n \geq 0}$ is said to be orthogonal with respect to v. It is a very well known fact that the sequence $\left\{S_{n}\right\}_{n \geq 0}$ satisfies the recurrence relation (see, for instance, the monograph by Chihara [6])

$$
\begin{align*}
S_{n+2}(x) & =\left(x-\xi_{n+1}\right) S_{n+1}(x)-\rho_{n+1} S_{n}(x), \quad n \geq 0, \\
S_{1}(x) & =x-\xi_{0}, \quad S_{0}(x)=1, \tag{5}
\end{align*}
$$

with $\left(\xi_{n}, \rho_{n+1}\right) \in \mathbb{C} \times \mathbb{C}-\{0\}, \quad n \geq 0$, by convention we set $\rho_{0}=(v)_{0}=1$.
In this case, let $\left\{S_{n}^{(1)}\right\}_{n \geq 0}$ be the associated sequence of first kind for the sequence $\left\{S_{n}\right\}_{n \geq 0}$ satisfying the three-term recurrence relation [6]

$$
\begin{align*}
S_{n+2}^{(1)}(x) & =\left(x-\xi_{n+2}\right) S_{n+1}^{(1)}(x)-\rho_{n+2} S_{n}^{(1)}(x), \quad n \geq 0 \\
S_{1}^{(1)}(x) & =x-\xi_{1}, \quad S_{0}^{(1)}(x)=1, \quad\left(S_{-1}^{(1)}(x)=0\right) \tag{6}
\end{align*}
$$

Another important representation of $S_{n}^{(1)}$ is, (see [6])

$$
\begin{equation*}
S_{n}^{(1)}(x):=\left\langle v, \frac{S_{n+1}(x)-S_{n+1}(\zeta)}{x-\zeta}\right\rangle, n \geq 0 \tag{7}
\end{equation*}
$$

Also, let $\left\{S_{n}(., \mu)\right\}_{n \geq 0}$ be co-recursive polynomials for the sequence $\left\{S_{n}\right\}_{n \geq 0}$ satisfying [6]

$$
\begin{equation*}
S_{n}(x, \mu)=S_{n}(x)-\mu S_{n-1}^{(1)}, \quad n \geq 0 \tag{8}
\end{equation*}
$$

We recall that a form v is called symmetric if $(v)_{2 n+1}=0, n \geq 0$. The conditions $(v)_{2 n+1}=0, n \geq 0$ are equivalent to the fact the corresponding $\operatorname{MOPS}\left\{S_{n}\right\}_{n \geq 0}$ satisfies the recurrence relation (5) with $\xi_{n}=0, n \geq 0[6]$.

Now let v be a regular, normalized form (i.e. $(v)_{0}=1$) and $\left\{S_{n}\right\}_{n \geq 0}$ be its corresponding sequence of polynomials. For a $\tau \in \mathbb{C}$ and $\lambda \in \mathbb{C}^{*}$, we can define a new form u as following:

$$
\begin{equation*}
(u)_{2 n+2}-\tau^{2}(u)_{2 n}=-\lambda(v)_{n},(u)_{2 n+1}=\tau(u)_{2 n},(u)_{0}=1, \quad n \geq 0 \tag{9}
\end{equation*}
$$

Equivalently,

$$
\begin{equation*}
\left(x-\tau^{2}\right) \sigma u=-\lambda v, \quad \sigma((x-\tau) u)=0 \tag{10}
\end{equation*}
$$

From (1) and (10), we have

$$
\begin{equation*}
\sigma u=-\lambda\left(x-\tau^{2}\right)^{-1} v+\delta_{\tau^{2}} \tag{11}
\end{equation*}
$$

Remarks.
i) (10) is equivalent to

$$
\begin{equation*}
\left(x^{2}-\tau^{2}\right) u=-\lambda w, \tag{12}
\end{equation*}
$$

where the form w defined by

$$
\sigma w=v, \quad \sigma(x-\tau) w=0
$$

Notice that w is not necessarily a regular form in the problem understudy. In [2], the authors have solved where w is regular and $\tau=0$ and in [3], the problem (12) is solved when $\tau \neq 0$ and w is regular.
ii) The case $\tau=0$ is treated in [13], so henceforth we assume $\tau \neq 0$.

Proposition 1. The form u is regular if and only if $\lambda \neq \lambda_{n}, n \geq 0$ where

$$
\begin{equation*}
\lambda_{0}=0, \quad \lambda_{n+1}=\frac{S_{n+1}\left(\tau^{2}\right)}{S_{n}^{(1)}\left(\tau^{2}\right)}, n \geq 0 \tag{13}
\end{equation*}
$$

To prove the above proposition, we need the following lemma:
Lemma 2. [9] The form u defined by (10) is regular if and only if σu and $\left(x-\tau^{2}\right) \sigma u$ are regular.

Proof of Proposition 1. We have u is defined by (10). Then, according to Lemma $2, u$ is regular if and only if $\left(x-\tau^{2}\right) \sigma u$ and σu are regular. But $\left(x-\tau^{2}\right) \sigma u=-\lambda v$ is regular since $\lambda \neq 0$ and v is regular. So u is regular if and only if $\sigma u=-\lambda(x-$ $\left.\tau^{2}\right)^{-1} \sigma v+\delta_{\tau^{2}}$ is regular. Or, $\left\{S_{n}\right\}_{n \geq 0}$ is the corresponding orthogonal sequence to v, and it was shown in [11] that $\sigma u=-\lambda\left(x-\tau^{2}\right)^{-1} v+\delta_{\tau^{2}}$ is regular if and only if $\lambda \neq 0$, and $S_{n}\left(\tau^{2}, \lambda\right) \neq 0, n \geq 0$. Then we deduce the desired result.

When u is regular let $\left\{Z_{n}\right\}_{n \geq 0}$ be its corresponding sequence of polynomials satisfying the recurrence relation

$$
\begin{align*}
Z_{n+2}(x) & =\left(x-(-1)^{n+1} \tau\right) Z_{n+1}(x)-\gamma_{n+1} Z_{n}(x), \quad n \geq 0 \tag{14}\\
Z_{1}(x) & =x-\tau, \quad Z_{0}(x)=1
\end{align*}
$$

Let us consider its quadratic decomposition [6, 9]:

$$
\begin{equation*}
Z_{2 n}(x)=P_{n}\left(x^{2}\right), \quad Z_{2 n+1}(x)=(x-\tau) R_{n}\left(x^{2}\right) \tag{15}
\end{equation*}
$$

The sequences $\left\{P_{n}\right\}_{n \geq 0}$ and $\left\{R_{n}\right\}_{n \geq 0}$ are respectively orthogonal with respect to σu and $\left(x-\tau^{2}\right) \sigma u$.

From (10), we have

$$
\begin{equation*}
R_{n}(x)=S_{n}(x), \quad n \geq 0 \tag{16}
\end{equation*}
$$

Proposition 3. We may write

$$
\begin{equation*}
\gamma_{1}=-\lambda, \quad \gamma_{2 n+2}=a_{n}, \quad \gamma_{2 n+3}=\frac{\rho_{n+1}}{a_{n}}, \quad n \geq 0 \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{n}=-\frac{S_{n+1}\left(\tau^{2}, \lambda\right)}{S_{n}\left(\tau^{2}, \lambda\right)}, \quad n \geq 0 \tag{18}
\end{equation*}
$$

For the proof, we need the following lemma:
Lemma 4. [4] We have

$$
\begin{equation*}
Z_{2 n}^{(1)}(x)=R_{n}\left(x^{2}, \lambda\right), \quad Z_{2 n+1}^{(1)}(x)=(x+\tau) P_{n}^{(1)}\left(x^{2}\right), \quad n \geq 0 . \tag{19}
\end{equation*}
$$

Proof of Proposition 3. Using (10) and the condition $\left\langle u, Z_{2}\right\rangle=0$, we obtain $\gamma_{1}=-\lambda$.

From (6) and (14) where $n \longrightarrow 2 n$ and taking (16) and (19) into account, we get

$$
S_{n+1}\left(x^{2},-\gamma_{1}\right)=(x-\tau) Z_{2 n+1}^{(1)}(x)-\gamma_{2 n+2} S_{n}\left(x^{2},-\gamma_{1}\right) .
$$

Substituting x by τ in the above equation, we obtain $\gamma_{2 n+2}=a_{n}$.
From (14), we have

$$
\begin{equation*}
\gamma_{2 n+2} \gamma_{2 n+3}=\frac{\left\langle u, Z_{2 n+2}^{2}\right\rangle}{\left\langle u, Z_{2 n+1}^{2}\right\rangle} \frac{\left\langle u, Z_{2 n+3}^{2}\right\rangle}{\left\langle u, Z_{2 n+2}^{2}\right\rangle}=\frac{\left\langle u, Z_{2 n+3}^{2}\right\rangle}{\left\langle u, Z_{2 n+1}^{2}\right\rangle} . \tag{20}
\end{equation*}
$$

Using (5), (10) and (15) - (16), Equation (20) becomes

$$
\begin{equation*}
\gamma_{2 n+2} \gamma_{2 n+3}=\rho_{n+1} \tag{21}
\end{equation*}
$$

then we deduce $\gamma_{2 n+3}=\frac{\rho_{n+1}}{a_{n}}$.

We suppose that the form v has the following integral representation:

$$
\langle v, f\rangle=\int_{0}^{+\infty} V(x) f(x) \mathrm{d} x, f \in \mathcal{P}, \text { with }(v)_{0}=\langle v, f\rangle=\int_{0}^{+\infty} V(x) \mathrm{d} x
$$

where V is a locally integrable function with rapid decay and continuous at the point $x=\tau^{2}$.

It is obvious that

$$
f(x)=f^{e}\left(x^{2}\right)+x f^{o}\left(x^{2}\right), f \in \mathcal{P}
$$

Therefore,

$$
\langle u, f(x)\rangle=\left\langle u, f^{e}\left(x^{2}\right)+\tau f^{o}\left(x^{2}\right)\right\rangle=\left\langle\sigma u, f^{e}(x)+\tau f^{o}(x)\right\rangle,
$$

since u satisfies (10).
Using (11) and taking into account that $f^{e}\left(\tau^{2}\right)+\tau f^{o}\left(\tau^{2}\right)=f(\tau)$, we obtain

$$
\begin{align*}
\langle u, f\rangle=f(\tau)\{ & \left.1+\lambda P \int_{-\infty}^{+\infty} \frac{V(x)}{x-\tau^{2}} \chi_{[0,+\infty[}(x) \mathrm{d} x\right\} \\
& -\lambda P \int_{-\infty}^{+\infty} \frac{V(x)}{x-\tau^{2}} \chi_{[0,+\infty[}(x)\left(f^{e}+\tau f^{o}\right)(x) \mathrm{d} x \tag{22}
\end{align*}
$$

where

$$
P \int_{-\infty}^{+\infty} \frac{V(x)}{x-\tau^{2}} f(x)=\lim _{\epsilon \rightarrow 0}\left\{\int_{-\infty}^{\tau^{2}-\varepsilon} \frac{V(x)}{x-\tau^{2}} f(x) \mathrm{d} x+\int_{\tau^{2}+\epsilon}^{+\infty} \frac{V(x)}{x-\tau^{2}} f(x) \mathrm{d} x\right\}
$$

and $\chi_{[a, b]}$ denotes the characteristic function of the interval $[a, b]$, i.e. $\chi_{[a, b]}(x)=1$ when $x \in[a, b]$ and zero otherwise.

Using the fact that $f^{e}(x)=\frac{f(\sqrt{x})+f(-\sqrt{x})}{2}$ and $f^{o}(x)=\frac{f(\sqrt{x})-f(-\sqrt{x})}{2 \sqrt{x}}$ for $x>0$ and making the change of variables $t=\sqrt{x}$, we get

$$
\begin{aligned}
P \int_{-\infty}^{+\infty} \frac{V(x)}{x-\tau^{2}} \chi_{[0,+\infty}(x)\left(f^{e}+\tau f^{o}\right)(x) \mathrm{d} x & =P \int_{-\infty}^{+\infty} \frac{V\left(t^{2}\right)}{t-\tau} \chi_{[0,+\infty}[(t) f(t) \mathrm{d} t \\
& +P \int_{-\infty}^{+\infty} \frac{V\left(t^{2}\right)}{t+\tau} \chi_{[0,+\infty[}(t) f(-t) \mathrm{d} t
\end{aligned}
$$

Inserting the last equation into (22), we get after a change variables in the obtained equation

$$
\begin{align*}
\langle u, f\rangle=f(\tau)\{1 & \left.+\lambda P \int_{-\infty}^{+\infty} \frac{V(t)}{t-\tau^{2}} \chi_{[0,+\infty[}(t) \mathrm{d} t\right\} \\
& +\lambda P \int_{-\infty}^{+\infty} \frac{V\left(t^{2}\right)}{t-\tau} \chi_{]-\infty, 0]}(t) f(t) \mathrm{d} t \tag{23}\\
& -\lambda P \int_{-\infty}^{+\infty} \frac{V\left(t^{2}\right)}{t-\tau} \chi_{[0,+\infty[}(t) f(t) \mathrm{d} t
\end{align*}
$$

2. THE SEMI-CLASSICAL CASE

Let us recall that a form v is called semi-classical when it is regular and satisfies a linear non-homogeneous differential equation [10]

$$
\begin{equation*}
\Phi(z) S^{\prime}(v)(z)=C_{0}(z) S(v)(z)+D_{0}(z), \tag{24}
\end{equation*}
$$

where Φ monic, C_{0} and D_{0} are polynomials with

$$
\begin{equation*}
S(v)(z)=-\sum_{n \geq 0} \frac{(v)_{n}}{z^{n+1}}, \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{0}(x)=-\left(v \theta_{0} \Phi\right)^{\prime}(x)+\left(v \theta_{0} C_{0}\right)(x) . \tag{26}
\end{equation*}
$$

It was shown in [10] that equation (24) is equivalent to

$$
\begin{equation*}
(\Phi(x) v)^{\prime}+\Psi(x) v=0 \tag{27}
\end{equation*}
$$

with

$$
\begin{equation*}
\Psi(x)=-\Phi^{\prime}(x)-C_{0}(x) . \tag{28}
\end{equation*}
$$

The triple (Φ, C_{0}, D_{0}) of the differential equation is not unique, then (24) can simplified if and only if there exists a root c of Φ such that $C_{0}(c)=0$ and $D_{0}(c)=0$. Then v fulfils the differential equation

$$
\left(\theta_{c} \Phi\right)(z) S^{\prime}(v)(z)=\left(\theta_{c} C_{0}\right)(z) S(v)(z)+\left(\theta_{c} D_{0}\right)(z)
$$

We call the class of the linear form v, the minimum value of the integer $\max \left(\operatorname{deg}(\Phi)-2, \operatorname{deg}\left(C_{0}\right)-1\right)$ for all triples satisfying (24).
The class of the semi-classical form v is $s=\max \left(\operatorname{deg}(\Phi)-2, \operatorname{deg}\left(C_{0}\right)-1\right)$ if and only if the following condition is satisfied [8]

$$
\begin{equation*}
\prod_{c \in \mathcal{Z}}\left(\left|C_{0}(c)\right|+\left|D_{0}(c)\right|\right) \neq 0 \tag{29}
\end{equation*}
$$

where \mathcal{Z} denotes the set of zeros of Φ.
The corresponding orthogonal sequence $\left\{S_{n}\right\}_{n \geq 0}$ is also called semi-classical of class s.

The semi-classical character is invariant by shifting. Indeed, the shifted form $\hat{v}=\left(h_{a^{-1}} o t_{-b}\right) v, a \in \mathbb{C}-\{0\}, b \in \mathbb{C}$ satisfies

$$
\begin{equation*}
\hat{\Phi}(z) S^{\prime}(\hat{v})(z)=\hat{C}_{0}(z) S(\hat{v})(z)+\hat{D}_{0}(z) \tag{30}
\end{equation*}
$$

with

$$
\begin{aligned}
\hat{\Phi}(z) & =a^{-k} \Phi(a z+b), & \hat{C}_{0}(z) & =a^{1-k} C_{0}(a z+b), \\
\hat{D}_{0}(z) & =a^{2-k} D_{0}(a z+b), & k & =\operatorname{deg}(\Phi) .
\end{aligned}
$$

The forms $t_{b} v$ (translation of v) and $h_{a} v$ (dilation of v) are defined by

$$
\left\langle t_{b} v, f\right\rangle:=\langle v, f(x+b)\rangle, \quad\left\langle h_{a} v, f\right\rangle:=\langle v, f(a x)\rangle, \quad f \in \mathcal{P} .
$$

The sequence $\left\{\hat{S}_{n}(x)=a^{-n} S_{n}(a x+b)\right\}_{n \geq 0}$ is orthogonal with respect to \hat{v} and fulfils (5) with

$$
\begin{equation*}
\hat{\xi}_{n}=\frac{\xi_{n}-b}{a}, \quad \hat{\rho}_{n+1}=\frac{\rho_{n+1}}{a^{2}}, \quad n \geq 0 . \tag{31}
\end{equation*}
$$

In the sequel the form v will be supposed semi-classical linear form of class s satisfying (24) and (27) and using a dilation in the variable τ, we can take him equal to one.

Proposition 5. For every $\lambda \in \mathbb{C}-\{0\}$ such that $S_{n}(1, \lambda) \neq 0, n \geq 0$, the form u defined by (10) is regular and semi-classical. It satisfies

$$
\begin{equation*}
\tilde{\Phi}(z) S^{\prime}(u)(z)=\tilde{C}_{0}(z) S(u)(z)+\tilde{D}_{0}(z) \tag{32}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\tilde{\Phi}(z)=(z-1) \Phi\left(z^{2}\right) \tag{33}\\
\tilde{C}_{0}(z)=2 z(z-1) C_{0}\left(z^{2}\right)-\Phi\left(z^{2}\right) \\
\tilde{D}_{0}(z)=-2 z\left(\lambda D_{0}\left(z^{2}\right)-C_{0}\left(z^{2}\right)\right)
\end{array}\right.
$$

and u is of class \tilde{s} such that $\tilde{s} \leq 2 s+3$.
Proof. From (10) and (25), we have

$$
\begin{equation*}
S(v)\left(z^{2}\right)=-\lambda^{-1}(z-1) S(u)(z)-\lambda^{-1} \tag{34}
\end{equation*}
$$

Make a change of variable $z \longrightarrow z^{2}$ in (24), multiply by $-2 \lambda z$ and substitute (34) in the obtained equation, we get (32) - (33).

Then, $\operatorname{deg}(\tilde{\Phi}) \leq 2 s+5$ and $\operatorname{deg}\left(\tilde{C}_{0}\right) \leq 2 s+4$.
Thus, $\tilde{s}=\max \left(\operatorname{deg}(\tilde{\Phi})-2, \operatorname{deg}\left(\tilde{C}_{0}\right)-1\right) \leq 2 s+3$.
As an immediate consequence of (32) - (33), the form u satisfies the functional equation

$$
\begin{equation*}
(\tilde{\Phi} u)^{\prime}+\tilde{\Psi} u=0 \tag{35}
\end{equation*}
$$

where $\tilde{\Phi}$ is the polynomial defined by (33) and

$$
\begin{equation*}
\tilde{\Psi}(x)=-\tilde{\Phi}^{\prime}(x)-\tilde{C}_{0}(x)=2 x(x-1) \Psi\left(x^{2}\right) . \tag{36}
\end{equation*}
$$

Proposition 6. The class of u depends only on the zeros $x=0$ and $x=1$ of $\tilde{\Phi}$.
Proof. Since v is a semi-classical form of class $s, S(v)(z)$ satisfies (24), where the polynomials Φ, C_{0} and D_{0} are coprime. Let $\tilde{\Phi}, \tilde{C}_{0}$ and \tilde{D}_{0} be as in Proposition 5. Let d be a zero of $\tilde{\Phi}$ different from 0 and 1 , this implies that $\Phi\left(d^{2}\right)=0$. We know that $\left|C_{0}\left(d^{2}\right)\right|+\left|D_{0}\left(d^{2}\right)\right| \neq 0$
i) if $C_{0}\left(d^{2}\right) \neq 0$, then $\tilde{C}_{0}(d) \neq 0$,
ii) if $C_{0}\left(d^{2}\right)=0$, then $\tilde{D}_{0}(d) \neq 0$, whence $\left|\tilde{C}_{0}(d)\right|+\left|\tilde{D}_{0}(d)\right| \neq 0$.

Concerning the class of u, we have the following result (see Proposition 8). But first, let us this technical lemma.

Lemma 7. Let $X(z)=C_{0}(z)-\lambda D_{0}(z)$ and $Y(z)=C_{0}(z)-\Phi^{\prime}(z)$, where the polynomials Φ, C_{0} and D_{0} are defined in (24). We have the following properties. R_{1}. The equation (32) - (33) is irreducible in 0 if and only if $\Phi(0) \neq 0$.
R_{2}. The equation (32) - (33) is divisible by z but not by z^{2} if and only if $\Phi(0)=0$.
R_{3}. The equation (32) - (33) is irreducible in 1 if and only if

$$
(\Phi(1), X(1)) \neq(0,0)
$$

R_{4}. The equation (32) - (33) is divisible by $z-1$ and not by $(z-1)^{2}$ if and only if

$$
(\Phi(1), X(1))=(0,0) \text { and }\left(X^{\prime}(1), Y(1)\right) \neq(0,0)
$$

R_{5}. The equation (32)-(33) is divisible by $(z-1)^{2}$ and not by $(z-1)^{3}$ if and only if

$$
(\Phi(1), X(1))=\left(X^{\prime}(1), Y(1)\right)=(0,0) .
$$

Proof. From (33), we have $\tilde{\Phi}(0)=-\Phi(0)$. So by virtue of (29), we get R_{1}.
Now, if $\Phi(0)=0$, the equation (32) - (33) is divisible by z according to (29). Thus $S(u)(z)$ satisfies (32) with

$$
\left\{\begin{array}{l}
\tilde{\Phi}(z)=z(z-1)\left(\theta_{0} \Phi\right)\left(z^{2}\right) \tag{37}\\
\tilde{C}_{0}(z)=2(z-1) C_{0}\left(z^{2}\right)-z\left(\theta_{0} \Phi\right)\left(z^{2}\right) \\
\tilde{D}_{0}(z)=2 C_{0}\left(z^{2}\right)-2 \lambda D_{0}\left(z^{2}\right)
\end{array}\right.
$$

Then, $\tilde{C}_{0}(0)=-C_{0}(0)$. If $C_{0}(0)=0$, thus the equation (32)-(37) is irreducible in 0 . If $C_{0}(0)=0$, so from (37), we obtain $\tilde{D}_{0}(0)=-2 \lambda D_{0}(0) \neq 0$ since v is semi-classical form of class s and so satisfies (29). Therefore, we deduce R_{2}.

From (33), we get $\tilde{C}_{0}(1)=-\Phi(1)$ and $\tilde{D}_{0}(1)=2 X(1)$.
We can deduce that $\left|\tilde{C}_{0}(1)\right|+\left|\tilde{D}_{0}(1)\right| \neq 0$ if and only if $(\Phi(1), X(1)) \neq(0,0)$. Thus R_{3} is proved.

If $(\Phi(1), X(1))=(0,0)$, then the equation $(32)-(33)$ can be divided by $z-1$ according to (29). In this case, $S(u)(z)$ satisfies (32) with

$$
\left\{\begin{array}{l}
\tilde{\Phi}(z)=\Phi\left(z^{2}\right) \tag{38}\\
\tilde{C}_{0}(z)=2 z C_{0}\left(z^{2}\right)-(z+1)\left(\theta_{1} \Phi\right)\left(z^{2}\right) \\
\tilde{D}_{0}(z)=2 C_{0}\left(z^{2}\right)-2 \lambda D_{0}\left(z^{2}\right)+2(z+1)\left(\theta_{1}\left(C_{0}-\lambda D_{0}\right)\right)\left(z^{2}\right)
\end{array}\right.
$$

Substituting z by 1 in (38), we obtain $\tilde{C}_{0}(1)=Y(1)$ and $\tilde{D}_{0}(1)=X^{\prime}(1)$. Then $(32)-(38)$ is irreducible in 1 if and only if $\left(X^{\prime}(1), Y(1)\right) \neq(0,0)$. Hence R_{4}.

If $\left(X^{\prime}(1), Y(1)\right) \neq(0,0)$, then the equation (32) - (38) can be divided by $z-1$ according to (29). Therefore $S(u)(z)$ satisfies (32) with

$$
\left\{\begin{array}{l}
\tilde{\Phi}(z)=(z+1)\left(\theta_{1} \Phi\right)\left(z^{2}\right) \tag{39}\\
\tilde{C}_{0}(z)=2 C_{0}\left(z^{2}\right)+2(z+1)\left(\theta_{1}\left(C_{0}-\theta_{1} \Phi\right)\right)\left(z^{2}\right)-\left(\theta_{1} \Phi\right)\left(z^{2}\right) \\
\tilde{D}_{0}(z)=-2(z+2)\left(\theta_{1}\left(\lambda D_{0}-C_{0}\right)\right)\left(z^{2}\right)-4\left(\theta_{1}^{2}\left(\lambda D_{0}-C_{0}\right)\right)\left(z^{2}\right)
\end{array}\right.
$$

From the above equation, we have $\tilde{\Phi}(1)=2 \Phi^{\prime}(1)=0$. If $\Phi^{\prime}(1)=0$, then from the condition $Y(1)=0$ we obtain $C_{0}(1)=0$. Thus from the last result and the condition $X(1)=0$, we get $D_{0}(1)=0$. Impossible, since v is semi-classical form of class s and so satisfies (29). Thus R_{5} is proved.

Proposition 8. Under the conditions of Proposition 5, for the class of u, we have the two different cases:

1) $\Phi(0) \neq 0$.
i) $\tilde{s}=2 s+3$ if $(\Phi(1), X(1)) \neq(0,0)$.
ii) $\tilde{s}=2 s+2$ if $(\Phi(1), X(1))=(0,0)$ and $\left(Y(1), X^{\prime}(1)\right) \neq(0,0)$.
iii) $\tilde{s}=2 s+1$ if $(\Phi(1), X(1))=\left(Y(1), X^{\prime}(1)\right)=(0,0)$.
2) $\Phi(0)=0$.
i) $\tilde{s}=2 s+2$ if $(\Phi(1), X(1)) \neq(0,0)$.
ii) $\tilde{s}=2 s+1$ if $(\Phi(1), X(1))=(0,0)$ and $\left(Y(1), X^{\prime}(1)\right) \neq(0,0)$.
iii) $\tilde{s}=2 s$ if $(\Phi(1), X(1))=\left(Y(1), X^{\prime}(1)\right)=(0,0)$.

Proof. From Proposition 6, the class of u depends only on the zeros 0 and 1 . For the zero 0 we consider the following situations:
A) $\Phi(0) \neq 0$. In this case the equation (32) - (33) is irreducible in 0 according to R_{1}. But what about the zero 1 ?
We will analyze the following cases:
i) $(\Phi(1), X(1)) \neq(0,0)$, the equation (32) - (33) is irreducible in 1 according to R_{3}. Then (32) - (33) is irreducible and $\tilde{s}=2 s+3$. Thus we proved 1) i).
ii) $(\Phi(1), X(1))=(0,0)$ and $\left(Y(1), X^{\prime}(1)\right) \neq(0,0)$.

From R_{4}., (32) - (33) is divisible by $z-1$ but not by $(z-1)^{2}$ and thus the order of the class of u decreases in one unit. In fact, $S(u)(z)$ satisfies the irreducible equation (32) - (38) and then $\tilde{s}=2 s+2$ and 1) ii) is also proved.
iii) $(\Phi(1), X(1))=\left(Y(1), X^{\prime}(1)\right)=(0,0)$.

From R_{5}., (32) - (33) is divisible by $(z-1)^{2}$ but not by $(z-1)^{3}$ and thus the order of the class of u decreases in two units. In fact, $S(u)(z)$ satisfies the irreducible equation (32) - (39) and then $\tilde{s}=2 s+1$. Thus 1) iii) is proved.
B) $\Phi(0) \neq 0$. In this condition, (32)-(33) is divisible by z but not by z^{2} according to R_{2}. But what about the zero 1 ?
We have the three following cases:
i) $(\Phi(1), X(1)) \neq(0,0)$, the equation $(32)-(33)$ is irreducible in 1 according to R_{3}. Then $S(u)(z)$ satisfies the irreducible equation (32) - (37) and then $\tilde{s}=2 s+2$. Thus we proved 2) i).
ii) $(\Phi(1), X(1))=(0,0)$ and $\left(Y(1), X^{\prime}(1)\right) \neq(0,0)$.

From R_{4}., (32) - (33) is divisible by $z-1$ but not by $(z-1)^{2}$ and thus the order of the class of u decreases in one unit. In fact, $S(u)(z)$ satisfies the irreducible Equation (32) with

$$
\left\{\begin{array}{l}
\tilde{\Phi}(z)=z\left(\theta_{0} \Phi\right)\left(z^{2}\right) \tag{40}\\
\tilde{C}_{0}(z)=2 C_{0}\left(z^{2}\right)-\left(\theta_{0} \Phi\right)\left(z^{2}\right)-(z+1)\left(\theta_{0} \theta_{1} \Phi\right)\left(z^{2}\right) \\
\tilde{D}_{0}(z)=-2(z+1)\left(\theta_{1}\left(\lambda D_{0}-C_{0}\right)\right)\left(z^{2}\right)
\end{array}\right.
$$

Thus $\tilde{s}=2 s+1$ and 2) ii) is proved.
iii) $(\Phi(1), X(1))=\left(Y(1), X^{\prime}(1)\right)=(0,0)$.

From R_{5}., (32) - (33) is divisible by $(z-1)^{2}$ but not by $(z-1)^{3}$. So, $S(u)(z)$ satisfies the irreducible Equation (32) with

$$
\left\{\begin{array}{l}
\tilde{\Phi}(z)=(z+1)\left(\theta_{0} \theta_{1} \Phi\right)\left(z^{2}\right)+\left(\theta_{0} \Phi\right)\left(z^{2}\right) \tag{41}\\
\tilde{C}_{0}(z)=2(z+1)\left(\theta_{1}\left(C_{0}-\theta_{0} \theta_{1} \Phi\right)\right)\left(z^{2}\right)-(z+2)\left(\theta_{0} \theta_{1} \Phi\right)\left(z^{2}\right) \\
\tilde{D}_{0}(z)=-2\left(\theta_{1}\left(\lambda D_{0}-C_{0}\right)\right)\left(z^{2}\right)-4(z+1)\left(\theta_{1}^{2}\left(\lambda D_{0}-C_{0}\right)\right)\left(z^{2}\right)
\end{array}\right.
$$

Therefore $\tilde{s}=2 s$ and 2) iii) is also proved.
Note that the sequence of orthogonal polynomials (OPS) relatively to a semiclassical form has a structure relation (written in a compact form)[10]. Then, if we consider that the form v is semi-classical, its OPS $\left\{S_{n}\right\}_{n \geq 0}$ fulfils the following structure relation:

$$
\begin{equation*}
\Phi(x) S_{n+1}^{\prime}(x)=\frac{1}{2}\left(C_{n+1}(x)-C_{0}(x)\right) S_{n+1}(x)-\rho_{n+1} D_{n+1}(x) S_{n}(x), \quad n \geq 0 \tag{42}
\end{equation*}
$$

with

$$
\left\{\begin{array}{l}
C_{n+1}(x)=-C_{n}(x)+2\left(x-\xi_{n}\right) D_{n}(x), \quad n \geq 0 \tag{43}\\
\rho_{n+1} D_{n+1}(x)=-\Phi(x)+\rho_{n} D_{n-1}(x)-\left(x-\xi_{n}\right) C_{n}(x) \\
+\left(x-\xi_{n}\right)^{2} D_{n}(x), \quad n \geq 0
\end{array}\right.
$$

where $\Phi, C_{0}(x)$ and $D_{0}(x)$ are the same polynomials as in (24); ξ_{n}, ρ_{n} are the coefficients of the three term recurrence relation (5). Notice that $D_{-1}(x)=$ $0, \operatorname{deg} C_{n} \leq s+1$ and $\operatorname{deg} D_{n} \leq s, n \geq 0$ [10].

According to Proposition 5, the form u is also semi-classical and its OPS $\left\{Z_{n}\right\}_{n \geq 0}$ satisfies a structure relation. In general, $\left\{Z_{n}\right\}_{n \geq 0}$ fulfils

$$
\begin{equation*}
\tilde{\Phi}(x) Z_{n+1}^{\prime}(x)=\frac{1}{2}\left(\tilde{C}_{n+1}(x)-\tilde{C}_{0}(x)\right) Z_{n+1}(x)-\gamma_{n+1} \tilde{D}_{n+1}(x) Z_{n}(x), \quad n \geq 0 \tag{44}
\end{equation*}
$$

with

$$
\left\{\begin{array}{l}
\tilde{C}_{n+1}(x)=-\tilde{C}_{n}(x)+2\left(x-(-1)^{n}\right) \tilde{D}_{n}(x), \quad n \geq 0 \tag{45}\\
\gamma_{n+1} \tilde{D}_{n+1}(x)=-\tilde{\Phi}(x)+\gamma_{n} \tilde{D}_{n-1}(x)-\left(x-(-1)^{n}\right) \tilde{C}_{n}(x) \\
+\left(x-(-1)^{n}\right)^{2} \tilde{D}_{n}(x), \quad n \geq 0
\end{array}\right.
$$

where $\tilde{\Phi}, \tilde{C}_{0}(x)$ and $\tilde{D}_{0}(x)$ are the same polynomials as in Equation (32).
We are going to establish the expression of \tilde{C}_{n} and $\tilde{D}_{n}, n \geq 0$ in terms of those of the sequence $\left\{S_{n}\right\}_{n \geq 0}$.

Proposition 9. The sequence $\left\{Z_{n}\right\}_{n \geq 0}$ fulfils (44) with (for $n \geq 0$)

$$
\begin{align*}
& \left\{\begin{array}{l}
\tilde{C}_{2 n+1}(x)=\Phi\left(x^{2}\right)+2 x(x-1) C_{n}\left(x^{2}\right)+4 \gamma_{2 n+1} x(x-1) D_{n}\left(x^{2}\right), \\
\tilde{D}_{2 n+1}(x)=2 x(x-1)^{2} D_{n}\left(x^{2}\right) .
\end{array}\right. \tag{46}\\
& \left\{\begin{array}{l}
\tilde{C}_{2 n+2}(x)=-\Phi\left(x^{2}\right)+2 x(x-1) C_{n+1}\left(x^{2}\right)+4 x(x-1) \gamma_{2 n+2} D_{n}\left(x^{2}\right), \\
\tilde{D}_{2 n+2}(x)=2 x \gamma_{2 n+2} D_{n}\left(x^{2}\right)+2 x \gamma_{2 n+3} D_{n+1}\left(x^{2}\right)+2 x C_{n+1}\left(x^{2}\right) .
\end{array}\right. \tag{47}
\end{align*}
$$

$\tilde{C}_{0}(x)$ and $\tilde{D}_{0}(x)$ are given by (33) and γ_{n+1} by (17).
Proof. Change $x \longrightarrow x^{2}, n \longrightarrow n-1$ in (42) and multiply by $2 x(x-1)^{2}$ we obtain by taking (15) - (16) into account,

$$
\begin{aligned}
&(x-1) \Phi(x) Z_{2 n+3}^{\prime}(x)=\left\{x(x-1)\left(C_{n+1}\left(x^{2}\right)-C_{0}\left(x^{2}\right)\right)+\Phi\left(x^{2}\right)\right\} Z_{2 n+3}(x) \\
&-2 \rho_{n+1} x(x-1) D_{n+1}\left(x^{2}\right) Z_{2 n+1}(x), \quad n \geq 0
\end{aligned}
$$

Using (14) and (21) where $n \longrightarrow 2 n$, the last equation becomes

$$
\begin{aligned}
\tilde{\Phi}(x) Z_{2 n+3}^{\prime}(x) & =\left\{x(x-1)\left(C_{n+1}\left(x^{2}\right)-C_{0}\left(x^{2}\right)+2 x(x-1) \gamma_{2 n+3} D_{n+1}\left(x^{2}\right)\right)\right. \\
& \left.+\Phi\left(x^{2}\right)\right\} Z_{2 n+3}(x)-2 \gamma_{2 n+3} x(x-1)^{2} D_{n+1}\left(x^{2}\right) Z_{2 n+2}(x), n \geq 0 .
\end{aligned}
$$

From (44) and the above equation, we have for $n \geq 0$

$$
\left\{\frac{\tilde{C}_{2 n+3}(x)-\tilde{C}_{0}(x)}{2}-X_{n+1}(x)\right\} Z_{2 n+3}(x)=\gamma_{2 n+3}\left\{\tilde{D}_{2 n+3}-Y_{n+1}(x)\right\} Z_{2 n+2}(x)
$$

with for $n \geq 0$

$$
\left\{\begin{array}{l}
X_{n}(x)=\left(C_{n}\left(x^{2}\right)-C_{0}\left(x^{2}\right)+2 \gamma_{2 n+1} D_{n}\left(x^{2}\right)\right) x(x-1)+\Phi\left(x^{2}\right) \\
Y_{n}(x)=2 x(x-1)^{2} D_{n}\left(x^{2}\right)
\end{array}\right.
$$

$Z_{2 n+3}$ and $Z_{2 n+2}$ have no common zeros, then $Z_{2 n+3}$ divides $Y_{n+1}(x)-\tilde{D}_{2 n+3}(x)$, which is a polynomial of degree at most equal to $2 s+3$. Then we have necessarily $Y_{n+1}(x)-\tilde{D}_{2 n+3}(x)=0$ for $n>s$, and also

$$
X_{n}(x)=\frac{\tilde{C}_{2 n+1}(x)-\tilde{C}_{0}(x)}{2}, \quad n>s
$$

Therefore,

$$
\tilde{C}_{2 n+3}(x)=2 X_{n+1}(x)+\tilde{C}_{0}(x) \quad \text { and } \quad \tilde{D}_{2 n+3}=Y_{n+1}(x), \quad n>s
$$

Then, by (33), we get (46) for $n>s$.
By virtue of the recurrence relation (43) and (33), we can easily prove by induction that the system (46) is valid for $0 \leq n \leq s$. Hence (46) is valid for $n \geq 0$.

After a derivation of (14) where $n \rightarrow 2 n+1$ multiplying by $(x-1) \Phi\left(x^{2}\right)$ and using (44), we obtain

$$
\begin{aligned}
(x-1)^{2} \Phi\left(x^{2}\right) Z_{2 n+2}^{\prime}(x) & =\frac{\tilde{C}_{2 n+3}(x)-\tilde{C}_{0}(x)}{2} Z_{2 n+3}(x) \\
& -\gamma_{2 n+3} \tilde{D}_{2 n+3}(x) Z_{2 n+2}(x)-(x-1) \Phi\left(x^{2}\right) Z_{2 n+2}(x) \\
& +\gamma_{2 n+2}\left\{\frac{\tilde{C}_{2 n+1}(x)-\tilde{C}_{0}(x)}{2} Z_{2 n+1}(x)-\gamma_{2 n+1} \tilde{D}_{2 n+1}(x) Z_{2 n}(x)\right\} .
\end{aligned}
$$

Applying the recurrence relation (14), we get

$$
\begin{aligned}
(x-1)^{2} \Phi\left(x^{2}\right) Z_{2 n+2}^{\prime}(x) & =\left\{(x-1) \frac{\tilde{C}_{2 n+3}(x)-\tilde{C}_{0}(x)}{2}+\gamma_{2 n+2} \tilde{D}_{2 n+1}(x)\right. \\
& \left.-\gamma_{2 n+3} \tilde{D}_{2 n+3}(x)-(x-1) \Phi\left(x^{2}\right)\right\} Z_{2 n+2}(x) \\
& -\gamma_{2 n+2}\left\{\frac{\tilde{C}_{2 n+3}(x)-\tilde{C}_{2 n+1}(x)}{2}+(x+1) \tilde{D}_{2 n+1}(x)\right\} Z_{2 n+1}(x) .
\end{aligned}
$$

Now, using (44) and taking into account the fact that $Z_{2 n+2}(x)$ and $Z_{2 n+1}(x)$ are coprime, we get from the last equation after simplification by $x-1$ (47) for $n>s$. Finally, by virtu of the recurrence relation (43) and (46) with $n=0$, we can easily prove by induction that the system (47) is valid for $0 \leq n \leq s$.

3. ILLUSTRATIVE EXAMPLES

(1) We study the problem (10), with $v:=\mathcal{L}(\alpha)$ where $\mathcal{L}(\alpha)$ is the Laguerre form. This form has the following integral representation [10]

$$
\begin{equation*}
\langle v, f\rangle=\frac{1}{\Gamma(\alpha+1)} \int_{0}^{+\infty} x^{\alpha} e^{-x} f(x) \mathrm{d} x, \mathfrak{R}(\alpha)>-1, f \in \mathcal{P} . \tag{48}
\end{equation*}
$$

Thus, using (23), we obtain the following integral representation of u

$$
\begin{align*}
\langle u, f\rangle & =f(1)\left\{1+\lambda P \int_{-\infty}^{+\infty} \frac{x^{\alpha} e^{-x}}{x-1} \chi_{[0,+\infty[}(x) \mathrm{d} x\right\} \\
& +\lambda \int_{-\infty}^{0} \frac{x^{2 \alpha} e^{-x^{2}}}{x-1} f(x) \mathrm{d} x-\lambda P \int_{-\infty}^{+\infty} \frac{x^{2 \alpha} e^{-x^{2}}}{x-1} \chi_{[0,+\infty[}(x) f(x) \mathrm{d} x \tag{49}
\end{align*}
$$

The form v is classical (semi-classical of class $s=0$), it satisfies (24) and (27) with [10]

$$
\left\{\begin{array}{l}
\Phi(x)=x, \quad \Psi(x)=x-\alpha-1 \tag{50}\\
C_{n}(x)=-x+2 n+\alpha, \quad D_{n}(x)=-1, n \geq 0
\end{array}\right.
$$

The sequence $\left\{S_{n}\right\}_{n \geq 0}$ fulfils (5) with [6]

$$
\begin{equation*}
\xi_{n}=2 n+\alpha+1, \quad \rho_{n+1}=(n+1)(n+\alpha+1), \quad n \geq 0 \tag{51}
\end{equation*}
$$

The regularity condition is $\alpha \neq-n, n \geq 1$.
First, we study the regularity of the form u.
From (7) and (2.11) in [6], we have for $n \geq 0$

$$
\begin{equation*}
S_{n}(1)=(-1)^{n} \sum_{k=0}^{n} \frac{(-1)^{k} \Gamma(n+1) \Gamma(n+\alpha+1)}{\Gamma(k+1) \Gamma(n-k+1) \Gamma(\alpha+k+1)}, \tag{52}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{n}^{(1)}(1)=(-1)^{n+1} \sum_{k=0}^{n+1} \frac{(-1)^{k} \Gamma(n+2) \Gamma(n+\alpha+2)}{\Gamma(k+1) \Gamma(n-k+1) \Gamma(\alpha+k+1)} b_{k-1}(\alpha) \tag{53}
\end{equation*}
$$

where

$$
b_{n}(\alpha)=\sum_{k=0}^{n} \frac{\Gamma(\alpha+k+1)}{\Gamma(\alpha+1)}, \quad b_{-1}(\alpha)=0
$$

By virtue of (8) and (52) - (53), we deduce

$$
\begin{equation*}
S_{n}(1, \lambda)=(-1)^{n} \Gamma(n+1) \Gamma(n+\alpha+1) c_{n}(\alpha, \lambda), \quad n \geq 0 \tag{54}
\end{equation*}
$$

where

$$
c_{n}(\alpha, \lambda)=\sum_{k=0}^{n} \frac{(-1)^{k}\left(1-\lambda b_{k-1}\right)(\alpha)}{\Gamma(k+1) \Gamma(n-k+1) \Gamma(\alpha+k+1)}, \quad n \geq 0
$$

Then, u is regular for every $\lambda \neq 0$ such that $c_{n}(\alpha, \lambda) \neq 0, n \geq 0$.
(18) and (54) give

$$
\begin{equation*}
a_{n}=(n+1)(n+\alpha+1) \frac{c_{n+1}(\alpha, \lambda)}{c_{n}(\alpha, \lambda)}, \quad n \geq 0 \tag{55}
\end{equation*}
$$

Therefore, with (17), we obtain for $n \geq 0$

$$
\left\{\begin{array}{l}
\gamma_{1}=-\lambda \tag{56}\\
\gamma_{2 n+2}=(n+1)(n+\alpha+1) \frac{c_{n+1}(\alpha, \lambda)}{c_{n}(\alpha, \lambda)} \\
\gamma_{2 n+3}=\frac{c_{n}(\alpha, \lambda)}{c_{n+1}(\alpha, \lambda)}
\end{array}\right.
$$

Taking into account that the form v is semi-classical and by virtue of Proposition 5, Proposition 8 and (50), the form u is semi-classical of class $\tilde{s}=2$ and fulfils (32) and (35) with

$$
\left\{\begin{array}{l}
\tilde{\Phi}(x)=x(x-1), \quad \tilde{\Psi}(x)=(x-1)\left(2 x^{2}-2 \alpha-1\right) \tag{57}\\
\tilde{C}_{0}(x)=-2 x^{3}+2 x^{2}+(2 \alpha-1) x-2 \alpha, \quad \tilde{D}_{0}(x)=2\left(-x^{2}+\alpha+\lambda\right)
\end{array}\right.
$$

Now, we are going the elements of the structure relation of the sequence $\left\{Z_{n}\right\}_{n \geq 0}$.

$$
\left\{\begin{array}{l}
\tilde{C}_{0}(x)=-2 x^{3}+2 x^{2}+(2 \alpha-1) x-2 \alpha \\
\tilde{C}_{1}(x)=2(x-1)\left(-x^{2}+\alpha+2 \lambda\right)+x \\
\tilde{C}_{2 n+2}(x)=2(x-1)\left(-x^{2}+2 n+\alpha+2-2(n+1)(n+\alpha+1) \frac{c_{n+1}(\alpha, \lambda)}{c_{n}(\alpha, \lambda)}\right)-x, \\
\tilde{C}_{2 n+3}(x)=2(x-1)\left(-x^{2}+2 n+\alpha+2-2 \frac{c_{n}(\alpha, \lambda)}{c_{n+1}(\alpha, \lambda)}\right)-x \\
\tilde{D}_{0}(x)=2\left(-x^{2}+\alpha+\lambda\right) \\
\tilde{D}_{2 n+1}(x)=-2(x-1)^{2}, \\
\tilde{D}_{2 n+2}=-2 x^{2}+2\left(n+\alpha+1-(n+1)(n+\alpha+1) \frac{c_{n+1}(\alpha, \lambda)}{c_{n}(\alpha, \lambda)}-\frac{c_{n}(\alpha, \lambda)}{c_{n+1}(\alpha, \lambda)}\right)
\end{array}\right.
$$

(2) We study the problem (10), with $v:=h_{\frac{1}{2}} o \tau_{1} \mathcal{J}(\alpha, \beta)$ where $\mathcal{J}(\alpha, \beta)$ is the Jacobi form. This form has the following integral representation [10]

$$
\begin{equation*}
\langle v, f\rangle=\frac{\Gamma(\alpha+\beta+2)}{\Gamma(\alpha+1) \Gamma(\beta+1)} \int_{0}^{1} x^{\alpha}(1-x)^{\beta} f(x) \mathrm{d} x, \mathfrak{R}(\alpha), \mathfrak{R}(\beta)>-1, f \in \mathcal{P} \tag{58}
\end{equation*}
$$

Thus, using (23), we obtain the following integral representation of u

$$
\begin{align*}
\langle u, f\rangle & =\lambda \frac{\Gamma(\alpha+\beta+2)}{\Gamma(\alpha+1) \Gamma(\beta+1)} \int_{-1}^{1} \operatorname{sgn} x|x|^{2 \alpha}\left(1-x^{2}\right)^{\beta-1}(x+1) f(x) \mathrm{d} x \\
& +\left(1-\lambda \frac{\alpha+\beta+1}{\beta}\right) f(1), \mathfrak{R}(\alpha)>-1, \mathfrak{R}(\beta)>0, f \in \mathcal{P} . \tag{59}
\end{align*}
$$

The form v is classical, it satisfies (24) and (27) with [10]

$$
\left\{\begin{array}{l}
\Phi(x)=x(x-1), \quad \Psi(x)=-(\alpha+\beta+2) x+\alpha+1 \tag{60}\\
C_{n}(x)=(2 n+\alpha+\beta) x-n-\frac{(n+\alpha)(\alpha+\beta)}{2 n+\alpha+\beta} \\
D_{n}(x)=2 n+\alpha+\beta+1, n \geq 0
\end{array}\right.
$$

The sequence $\left\{S_{n}\right\}_{n \geq 0}$ fulfils (5) with [6]

$$
\left\{\begin{array}{l}
\xi_{0}=\frac{\alpha+1}{\alpha+\beta+2}, \quad \xi_{n+1}=\frac{1}{2}\left(\frac{\beta^{2}-\alpha^{2}}{(2 n+\alpha+\beta+2)(2 n+\alpha+\beta+4)}+1\right), n \geq 0 \tag{61}\\
\rho_{n+1}=\frac{(n+1)(n+\alpha+1)(n+\beta+1)(n+\alpha+\beta+1)}{(2 n+\alpha+\beta+1)(2 n+\alpha+\beta+2)^{2}(2 n+\alpha+\beta+3)}, n \geq 0
\end{array}\right.
$$

The regularity conditions are $\alpha, \beta \neq-n, \alpha+\beta \neq-n, n \geq 1$.
Using (5) and (61), we get

$$
\begin{equation*}
S_{n}(1)=\frac{\Gamma(\beta+n+1) \Gamma(\alpha+\beta+n+1)}{\Gamma(\beta+1) \Gamma(\alpha+\beta+2 n+1)}, \quad n \geq 0 \tag{62}
\end{equation*}
$$

From (6) and (61), we obtain by induction

$$
\begin{equation*}
S_{n}^{(1)}(1)=\frac{(\alpha+\beta+1)}{\Gamma(\alpha+\beta+2 n+3)} d_{n}(\alpha, \beta), \quad n \geq 0 \tag{63}
\end{equation*}
$$

where for $n \geq 0$
$d_{n}(\alpha, \beta)=\left\{\begin{array}{l}\frac{1}{\alpha}\left(\frac{\Gamma(\alpha+n+2) \Gamma(\alpha+\beta+n+2)}{\Gamma(\alpha+1)}-\frac{\Gamma(\alpha+\beta+1) \Gamma(n+1) \Gamma(\beta+n+2)}{\Gamma(\beta+1)}\right), \alpha \neq 0, \\ \Gamma(n+1) \Gamma(n+\beta+2) \sum_{k=0}^{n}\left(\frac{1}{k+1}+\frac{1}{\beta+k+1}\right), \alpha=0 .\end{array}\right.$
By virtue of (8) and (62) - (63), we deduce

$$
\begin{equation*}
S_{n}(1, \lambda)=\frac{\Gamma(\beta+n+1) \Gamma(\alpha+\beta+n+1)}{\Gamma(\beta+1) \Gamma(\alpha+\beta+2 n+1)} e_{n}(\lambda, \alpha, \beta), \quad n \geq 0 \tag{64}
\end{equation*}
$$

where for $n \geq 0$

$$
e_{n}(\lambda, \alpha, \beta)=1-\lambda \frac{(\alpha+\beta+1) \Gamma(\beta+1)}{\Gamma(\beta+n+1) \Gamma(n+\alpha+\beta+1)} d_{n-1}(\alpha, \beta), d_{-1}(\alpha, \beta)=0
$$

Then, u is regular for every $\lambda \neq 0$ such that

$$
\begin{equation*}
\lambda \neq\left(\frac{(\alpha+\beta+1) \Gamma(\beta+1)}{\Gamma(\beta+n+1) \Gamma(n+\alpha+\beta+1)} d_{n-1}(\alpha, \beta)\right)^{-1}, \quad n \geq 1 . \tag{65}
\end{equation*}
$$

(18) and (64) give

$$
\begin{equation*}
a_{n}=-\frac{(\beta+n+1)(\alpha+\beta+n+1)}{(\alpha+\beta+2 n+1)(\alpha+\beta+2 n+2)} \frac{e_{n+1}(\lambda, \alpha, \beta)}{e_{n}(\lambda, \alpha, \beta)}, \quad n \geq 0 . \tag{66}
\end{equation*}
$$

Then, with (17), we obtain for $n \geq 0$

$$
\left\{\begin{array}{l}
\gamma_{1}=-\lambda \tag{67}\\
\gamma_{2 n+2}=-\frac{(\beta+n+1)(\alpha+\beta+n+1)}{(\alpha+\beta+2 n+1)(\alpha+\beta+2 n+2)} \frac{e_{n+1}(\lambda, \alpha, \beta)}{e_{n}(\lambda, \alpha, \beta)} \\
\gamma_{2 n+3}=-\frac{(n+1)(\alpha+n+1)}{(\alpha+\beta+2 n+2)(\alpha+\beta+2 n+3)} \frac{e_{n}(\lambda, \alpha, \beta)}{e_{n+1}(\lambda, \alpha, \beta)}
\end{array}\right.
$$

Taking into account that the form v is classical and by virtue of Proposition 5, the form u is also semi-classical. It satisfies (32) and (35) with

$$
\left\{\begin{array}{l}
\tilde{\Phi}(x)=x(x-1)\left(x^{2}-1\right) \tag{68}\\
\tilde{\Psi}(x)=(x-1)\left((2 \alpha+2 \beta-3) x^{2}+2 \alpha+1\right) \\
\tilde{C}_{0}(x)=-(x-1)\left((2 \alpha+2 \beta+1) x^{2}+x+2 \alpha\right) \\
\tilde{D}_{0}(x)=2(\alpha+\beta) x^{2}-2 \alpha-2 \lambda(\alpha+\beta+1)
\end{array}\right.
$$

From (60), we have

$$
\left\{\begin{array}{l}
\Phi(0)=0, \quad \Phi(1)=0 \\
X(1)=\beta-\lambda(\alpha+\beta+1), \quad X^{\prime}(1)=\alpha+\beta \\
Y(1)=\beta-1
\end{array}\right.
$$

Now it is enough to use Proposition 8 in order to obtain the following results:
(i) If λ satisfies (65) and $\lambda \neq \frac{\beta}{\alpha+\beta+1}$, then the class of u is $\tilde{s}=2$.
(ii) If $\lambda=\frac{\beta}{\alpha+\beta+1}$, then the class of u is $\tilde{s}=1$ since $\left(X^{\prime}(1), Y(1)\right) \neq(0,0)$.

Remarks.

(i) The semi-classical orthogonal polynomials of class one satisfies (14) have been described in [5, 7].
(ii) If $\lambda=\frac{\beta}{\alpha+\beta+1}$, then from (59), we get for $\mathfrak{R}(\alpha)>-1, \mathfrak{R}(\beta)>0$

$$
\begin{equation*}
\langle u, f\rangle=\frac{\Gamma(\alpha+\beta+1)}{\Gamma(\alpha+1) \Gamma(\beta)} \int_{-1}^{1} \operatorname{sgn} x|x|^{2 \alpha}\left(1-x^{2}\right)^{\beta-1}(x+1) f(x) \mathrm{d} x . \tag{69}
\end{equation*}
$$

This result exist in $[7,12]$.

According to Proposition 9, (60) and (67), we have, for $n \geq 0$

$$
\left\{\begin{aligned}
\tilde{C}_{0}(x)= & -(x-1)\left((2 \alpha+2 \beta+1) x^{2}+x+2 \alpha\right) \\
\tilde{C}_{1}(x)= & (x-1)\left((2 \alpha+2 \beta+1) x^{2}-x-2 \alpha-4 \lambda(\alpha+\beta+1)\right) \\
\tilde{C}_{2 n+2}(x) & =(x-1)\left((4 n+2 \alpha+2 \beta+3) x^{2}+x-2 n-2\right. \\
& \left.-2 \frac{(n+\alpha+1)(\alpha+\beta)}{2 n+\alpha+\beta+2}-4 \frac{(\beta+n+1)(\alpha+\beta+n+1)}{(\alpha+\beta+2 n+2)} \frac{e_{n+1}(\lambda, \alpha, \beta)}{e_{n}(\lambda, \alpha, \beta)}\right) \\
\tilde{C}_{2 n+3}(x) & =(x-1)\left((4 n+2 \alpha+2 \beta+5) x^{2}-x-2 n-2\right. \\
& \left.-2 \frac{(n+\alpha+1)(\alpha+\beta)}{2 n+\alpha+\beta+2}-4 \frac{(n+1)(\alpha+n+1)}{(\alpha+\beta+2 n+2)} \frac{e_{n}(\lambda, \alpha, \beta)}{e_{n+1}(\lambda, \alpha, \beta)}\right) \\
\tilde{D}_{0}(x)= & 2(\alpha+\beta) x^{2}-2 \alpha-2 \lambda(\alpha+\beta+1), \\
\tilde{D}_{2 n+1}(x) & =2(x-1)^{2}(\alpha+\beta+2 n+1), \\
\tilde{D}_{2 n+2}= & 2\left((2 n+\alpha+\beta+2) x^{2}-n-1-\frac{(n+\alpha+1)(\alpha+-\beta)}{2 n+\alpha+\beta+2}\right) \\
& -2 \frac{(\beta+n+1)(\alpha+\beta+n+1)}{(\alpha+\beta+2 n+2)} \frac{e_{n+1}(\lambda, \alpha, \beta)}{e_{n}(\lambda, \alpha, \beta)} \\
& -2 \frac{(n+1)(\alpha+n+1)}{(\alpha+\beta+2 n+2)} \frac{e_{n}(\lambda, \alpha, \beta)}{e_{n+1}(\lambda, \alpha, \beta)} .
\end{aligned}\right.
$$

REFERENCES

[1] Alaya, A., Bouras, B., \& Marcellan, F. (2012). A non-symmetric second degree semi-classical form of class one. Integral Transforms Spec. Funct., 23 (2), 149-159.
[2] Alaya, J., \& Maroni, P. (1996). Semi-classical and Laguerre-Hahn forms defined by pseudo-functions. Methods and Applications of Analysis, 3(1), 12-30.
[3] Branquinho, A., \& Marcellan, F. (1996). Generating new class of orthogonal polynomials. Int. J. Math. Sci., 19, 643-656.
[4] Bouras, B., \& Marcellan, F. (2010). Quadratic decomposition of a LaguerreHahn polynomial sequence I. Bull. Belg. Math. Soc. Simon Stevin, 17(4), 641-659.
[5] Bouras, B., \& Alaya, A. (2007). A large family of semi-classical polynomials of class one. Integral Transforms Spec. Funct., 18(12), 913-931.
[6] Chihara, T. S. (1978). An introduction to orthogonal polynomials. New York: Gordon and Breach.
[7] Maroni, P., \& Mejri, M. (2011). Some semiclassical orthogonal polynomials of classe one. Eurasian Mathematical Journal, 2(2), 108-128.
[8] Maroni, P. (1993). Variations around classical orthogonal polynomials. Connected problems. In $7^{\text {th }}$ Symp. Sobre Polinomios orthogonales y Appliciones, Proc., Granada (1991), J. Comput. Appl. Math., 48, 133-155.
[9] Maroni, P. (1991). Sur la décomposition quadratique d'une suite de polynômes orthogonaux. I, Rivista di Mat. Pura ed Appl., 6, 19-53.
[10] Maroni, P. (1991). Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques. In C. Brezinski et al. (Eds.), Orthogonal polynomials and their applications (pp. 95-130). IMACS Ann. Comput. Appl. Math. 9. Baltzer, Basel.
[11] Maroni, P. (1990). Sur la suite de polynômes orthogonaux associée à la forme $u=\delta_{c}+\lambda(x-c)^{-1}$ L. Period. Math. Hung., 21(3), 223-248.
[12] Sghaier, M. (2010). Some new results about a set of semi-classical polynomials of class $s=1$. Integral Transforms Spec. Funct., 21(7), 529-539.
[13] Sghaier, M. (2011). Some symmetric semi-classical polynomials sets. Filomat, 25(3), 175-189.
[14] Shohat, J. (1939). A differential equation for orthogonal polynomials. Duke Math. J., 5, 401-417.

