Pseudo-Parallel Legendrian Submanifolds With Flat Normal Bundle of Sasakian Space Forms

CHEN Xiaomin ${ }^{[a], *}$ and YANG Xue ${ }^{[b],[c]}$
${ }^{[a]}$ College of Sciences, China University of Petroleum (Beijing), Beijing, China.
${ }^{[\mathrm{b}]}$ Institute of Remote Sensing Applications Chinese Academy Of Sciences, Beijing, China.
${ }^{[c]}$ School of Computer and Information Engineering, Henan University, Kaifeng, China.
* Corresponding author.
Address: College of Science, China University of Petroleum (Beijing), Beijing; E-Mail: xmchen1983@126.com

Supported by The NNSF(11071257), partially by Science Foundation of China University of Petroleum (Beijing) and the NNSF of China (41201349).

Received: October 14, 2013 / Accepted: December 20, 2013 / Published online: January 24, 2014

Abstract: Let M^{n} be a Legendrian submanifold with flat normal bundle of a Sasakian space form $\widetilde{M}^{2 n+1}(c)$. Further, M^{n} is said to be pseudo-parallel if its second fundamental form h satisfies $\bar{R}(X, Y) \cdot h=L(X \wedge Y \cdot h)$. In this article we shall prove that M is semi-parallel or totally geodesic and if M satisfies $L \neq \frac{c+3}{4}$ then it is minimal in case of $n \geq 2$. Moreover, we show that if M^{n} is also a H-umbilical submanifold then either M^{n} is $L=\frac{c+3}{4}$, or $n=1$.

Key words: Legendrian submanifold; Minimal submanifold; H-umbilical submanifold; Pseudo-parallel submanifold; Sasakian space form

[^0]
1. INTRODUCTION

Recall that an isometric immersion $f: M^{n} \rightarrow \widetilde{M}^{n+k}$ from an n-dimensional Riemannian manifold into $n+k$-dimensional Riemannian with metric g is pseudo-parallel if its second fundamental form h satisfies

$$
\begin{equation*}
\bar{R}(X, Y) \cdot h=L X \wedge Y \cdot h, \tag{1.1}
\end{equation*}
$$

where $\bar{R}(X, Y)$ is the curvature operator with respect to the van der WaerdenBortolotti connection $\bar{\nabla}$ of f, L is some suitable smooth function on M and $X \wedge$ Y is an operator: $(X \wedge Y) Z=g(X, Z) Y-g(Y, Z) X$. So M is also referred as a L-pseudo-parallel submanifold of \widetilde{M}. In particular, if $L \equiv 0, M$ is called a semi-parallel submanifold.

In fact, the definition of pseudo-parallel was introduced in [1],[2] as an natural extension of semi-parallel and as the extrinsic analogue of pseudo-symmetry in the sense of Deszcz [7], i.e., the curvature operator of a semi-Riemannian manifold (M, g) satisfies

$$
R(X, Y) \cdot R=L_{R} X \wedge Y \cdot R
$$

for any X, Y tangent to M, L_{R} being some real value function on M.
Recently, concerning the study of pseudo-parallel immersion there are many results (see $[1,2,9-11]$), where the ambient manifold \widetilde{M} has constant sectional curvature. In particular, we observe that Chacón and Lobos [5] studied pseudo-parallel Lagrangian submanifolds in a complex space form, and gave several properties. Also, they proved a local classification of pseudo-parallel Lagrangian surfaces. Analogous to the Lagrangian submanifolds in a complex space form, we consider M^{n} is a Legendrian submanifold in Sasakian space form. Such a submanifold has been deeply studied over the past of several decades. However, for the pseudo-parallel submanifolds in a Sasakian space form, there is only A.Yildiz etc's result [14], where they considered pseudo-parallel C-totally real minimal submanifolds in a Sasakian space form $\widetilde{M}^{2 n+1}(c)$ and showed it is totally geodesic if $\operatorname{Ln}-\frac{1}{4}(n(c+3)+c-1) \geq 0$. In the present paper we consider the Legendrian submanifolds with flat normal bundle in Sasakian space forms, which satisfy pseudo-parallel condition (1.1).

In section 2 we introduce some necessary basic conceptions and give some properties. The section 3 is our main results.

2. BASIC CONCEPTS

2.1. Sasakian Space Form

Let $\widetilde{M}^{2 n+1}$ be a $2 n+1$-dimensional Riemannian manifold. \widetilde{M} is called an almost contact manifold if it is equipped with an almost contact structure (ϕ, ξ, η), where ϕ is a (1,1)-tensor field, ξ a unit vector field, η a one-form dual to ξ satisfying

$$
\begin{equation*}
\phi^{2}=-I+\eta \otimes \xi, \eta \circ \phi=0, \phi \circ \xi=0 . \tag{2.2}
\end{equation*}
$$

It is well-known that there exists a Riemannian metric \widetilde{g} such that

$$
\begin{align*}
\widetilde{g}(\phi X, \phi Y) & =\widetilde{g}(X, Y)-\eta(X) \eta(Y) \tag{2.3}\\
\widetilde{g}(\phi X, Y) & =-\widetilde{g}(X, \phi Y), \widetilde{g}(X, \xi)=\eta(X) \tag{2.4}
\end{align*}
$$

where $X, Y \in \mathfrak{X}(\widetilde{M})$. Moreover, if the almost contact structure (ϕ, ξ, η) is normal, i.e.

$$
\left(\widetilde{\nabla}_{X} \phi\right) Y=\widetilde{g}(X, Y) \xi-\eta(Y) X, \quad \widetilde{\nabla}_{X} \xi=-\phi X
$$

for any vectors X, Y on \widetilde{M}, where $\widetilde{\nabla}$ denotes the connection with respect to \widetilde{g}, then \widetilde{M} is said to be a Sasakian manifold. For more details and background, see [4] and [13].

A plane of $T_{p} \widetilde{M}$ at p is called ϕ-section if it is spanned by X and ϕX, where X is orthonormal to ξ. The curvature of ϕ-section is called ϕ-sectional curvature.

A $2 n+1$-Sasakian space form is defined as a $2 n+1$-Sasakian manifold with constant ϕ-sectional curvature c and is denoted by $\widetilde{M}^{2 n+1}(c)$. As examples of Sasakian space form, $\mathbb{R}^{2 n+1}$ and $S^{2 n+1}$ are equipped with Sasakian space form structures(more details in [3] and [13]). The curvature of a Sasakian space form $\widetilde{M}^{2 n+1}(c)$ is given by [13]

$$
\begin{align*}
\widetilde{R}(X, Y) Z & =\frac{c+3}{4}(\widetilde{g}(Y, Z) X-\widetilde{g}(X, Z) Y) \\
& +\frac{c-1}{4}(\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+\widetilde{g}(X, Z) \eta(Y) \xi \tag{2.5}\\
& -\widetilde{g}(Y, Z) \eta(X) \xi+\widetilde{g}(\phi Y, Z) \phi X-\widetilde{g}(\phi X, Z) \phi Y-2 \widetilde{g}(\phi X, Y) \phi Z)
\end{align*}
$$

for any $X, Y, Z \in T \widetilde{M}$.

2.2. Pseudo-Parallel Legendrian Submanifolds

Let M^{n} be an n-dimensional submanifold of a Sasakian space form $\widetilde{M}^{2 n+1}(c)$. If the one-form η constrained in M is zero, then we say M is a Legendrian submanifold. It is well-known that for such a submanifold ϕ maps any tangent vector to M at any $p \in M$ into the normal vector space $T_{p}^{\perp} M$, i.e. $\phi T_{p} M \subset T_{p}^{\perp} M$. Actually, a Legendrian submanifold is special a C-totally real submanifold(i.e. the unit vector field ξ is orthonormal to M). Therefore we obtain from (2.3) and (2.4) that for any $X, Y \in T M$,

$$
\widetilde{g}(\phi X, \phi Y)=g(X, Y), \quad \eta(X)=\widetilde{g}(X, \xi)=0,
$$

where g is the induced metric of \tilde{g}. As usual, ∇ and ∇^{\perp} denote by the Lev-Civita connection and normal connection on M, respectively. Then

$$
\widetilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y)
$$

where h is the second fundamental form. Similarly, the Weingarten formula is:

$$
\widetilde{\nabla}_{X} N=-A_{N} X+\nabla \frac{\perp}{X} N,
$$

where N is an normal vector on M and A_{N} is the shape operator. The shape operator is related to the second fundamental form by

$$
\begin{equation*}
g\left(A_{N} X, Y\right)=\widetilde{g}(h(X, Y), N)=g\left(X, A_{N} Y\right) . \tag{2.6}
\end{equation*}
$$

If R and R^{\perp} denote, respectively, the Riemannian curvature tensors corresponding to ∇ and ∇^{\perp}, then the basic Gauss equation and Ricci equation are:
$\widetilde{g}(\widetilde{R}(X, Y) Z, W)=g(R(X, Y) Z, W)+\widetilde{g}(h(X, Z), h(Y, W))-\widetilde{g}(h(X, W), h(Y, Z))$,
$\widetilde{g}(\widetilde{R}(X, Y) N, V)=\widetilde{g}\left(R^{\perp}(X, Y) N, V\right)-g\left(\left[A_{N}, A_{V}\right] X, Y\right), \forall N, V \in T^{\perp} M$.
The Codazzi equation:

$$
(\widetilde{R}(X, Y) Z)^{\perp}=\left(\bar{\nabla}_{X} h\right)(Y, Z)-\left(\bar{\nabla}_{Y} h\right)(X, Z)
$$

Here $\bar{\nabla}=\nabla \bigoplus \nabla^{\perp}$ stands for the Van der Waerden-Bortoloti connection, given by

$$
\left(\bar{\nabla}_{X} h\right)(Y, Z)=\nabla_{X}^{\perp} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right) .
$$

Moreover, the following facts are well-known:
Lemma 2.1 (see [8]). For a Legendrian submanifold, the following equations hold:

$$
\begin{align*}
A_{\phi X} Y & =A_{\phi Y} X, \tag{2.7}\\
A_{\phi X} Y & =-\phi h(X, Y)=A_{\phi Y} X, \quad A_{\xi}=0, \tag{2.8}\\
\widetilde{g}(h(X, Y), \phi Z) & =\widetilde{g}(h(X, Z), \phi Y) . \tag{2.9}
\end{align*}
$$

Therefore, it reduces from (2.2) and (2.8) that

$$
\begin{equation*}
\phi A_{\phi X} Y=h(X, Y)=\phi A_{\phi Y} X \tag{2.10}
\end{equation*}
$$

Moreover, using (2.10) and (2.4), from the Gauss equation we get

$$
\begin{equation*}
\widetilde{R}(X, Y)=R(X, Y)-\left[A_{\phi X}, A_{\phi Y}\right] \tag{2.11}
\end{equation*}
$$

For any vector fields Z, W on M, the curvature operator $\bar{R}(X, Y)$ with respect to $\bar{\nabla}$ and $X \wedge Y$ can be extended as derivations of tensor fields in usual way. Therefore

$$
\begin{align*}
(\bar{R}(X, Y) \cdot h)(Z, W)= & R^{\perp}(X, Y)(h(Z, W)) \\
& -h(R(X, Y) Z, W)-h(Z, R(X, Y) W), \tag{2.12}\\
(X \wedge Y \cdot h)(Z, W)= & -h((X \wedge Y) Z, W)-h(Z,(X \wedge Y) W) \\
= & -g(Y, Z) h(X, W)+g(X, Z) h(Y, W) \tag{2.13}\\
& -g(Y, W) h(X, Z)+g(X, W) h(Y, Z) .
\end{align*}
$$

By (2.10), (2.12) and (2.13), if the normal bundle is flat, i.e. $R^{\perp}=0$, then (1.1) becomes

$$
\begin{align*}
-A_{\phi W} R(X, Y) Z & -A_{\phi Z} R(X, Y) W \\
= & L\left\{-g(Y, Z) A_{\phi X} W+g(X, Z) A_{\phi Y} W\right. \tag{2.14}\\
& \left.-g(Y, W) A_{\phi X} Z+g(X, W) A_{\phi Y} Z\right\}
\end{align*}
$$

That is, a Legendrian submanifold M^{n} with flat normal bundle of $\widetilde{M}^{2 n+1}(c)$ is pseudo-parallel if only if the Equation (2.14) is satisfied. In particular, if $L \equiv 0$, then M is said to be semi-parallel. It is obvious that a totally geodesic submanifold is semi-parallel.

The following two propositions are the analogous conclusions to [5, Prop.3.1, Prop.3.2] in case of pseudo-parallel Legendrian submanifolds, respectively.

Proposition 2.2. Let M^{n} be a pseudo-parallel Legendrian submanifold of Sasakian space form $\widetilde{M}^{2 n+1}$. If there exists another function L^{\prime} satisfies (1.1), then $L=L^{\prime}$ at least $M-V$, where $V=\left\{p \in M \mid h_{p}=0\right\}$.

Proof. If two functions L and L^{\prime} satisfy (1.1), we have

$$
\left(L-L^{\prime}\right) X \wedge Y \cdot h=0
$$

Choosing an orthonormal basis $\left\{e_{1}, \cdots, e_{n}\right\}$ of $T_{p} M, p \in M$, we get

$$
\begin{aligned}
\left(L-L^{\prime}\right) & {\left[e_{i} \wedge e_{j} \cdot h\right]\left(e_{k}, e_{l}\right)=\left(L-L^{\prime}\right)\left[-h\left(\left(e_{i} \wedge e_{j}\right) e_{k}, e_{l}\right)-h\left(e_{k},\left(e_{i} \wedge e_{j}\right) e_{l}\right)\right] } \\
= & \left(L-L^{\prime}\right)\left\{-g\left(e_{j}, e_{k}\right) h\left(e_{i}, e_{l}\right)+g\left(e_{i}, e_{k}\right) h\left(e_{j}, e_{l}\right)\right. \\
& \left.-g\left(e_{j}, e_{l}\right) h\left(e_{i}, e_{k}\right)+g\left(e_{i}, e_{l}\right) h\left(e_{j}, e_{k}\right)\right\} \\
= & \left(L-L^{\prime}\right)\left\{-\delta_{j k} h\left(e_{i}, e_{l}\right)+\delta_{i k} h\left(e_{j}, e_{l}\right)-\delta_{j l} h\left(e_{i}, e_{k}\right)+\delta_{i l} h\left(e_{j}, e_{k}\right)\right\}=0 .
\end{aligned}
$$

For $i=k \neq j=l$, we have

$$
\left(L-L^{\prime}\right)\left(h\left(e_{i}, e_{i}\right)-h\left(e_{j}, e_{j}\right)\right)=0
$$

For $i=k=l \neq j$, we have

$$
\left(L-L^{\prime}\right) h\left(e_{i}, e_{j}\right)=0
$$

If $L(p) \neq L^{\prime}(p)$ for $p \in M$, then

$$
h\left(e_{i}, e_{j}\right)=0, h\left(e_{i}, e_{i}\right)=h\left(e_{j}, e_{j}\right) \text { for } \forall i \neq j .
$$

On the other hand, since when $i \neq j$,

$$
\begin{aligned}
g\left(h\left(e_{i}, e_{i}\right), \phi e_{j}\right) & =g\left(h\left(e_{i}, e_{j}\right), \phi e_{i}\right)=0 \\
g\left(h\left(e_{i}, e_{i}\right), \phi e_{i}\right) & =g\left(h\left(e_{j}, e_{j}\right), \phi e_{i}\right)=g\left(h\left(e_{i}, e_{j}\right), \phi e_{i}\right)=0 \\
g\left(h\left(e_{i}, e_{i}\right), \xi\right) & =0
\end{aligned}
$$

thus we obtain $g\left(h\left(e_{i}, e_{i}\right), N\right)=0, i=1, \cdots, n, \forall N \in T^{\perp} M$ since $\left\{\phi e_{1}, \cdots, \phi e_{n}, \xi\right\}$ is a basis of $T^{\perp} M$ for a Legendrian submanifold, that is, $h \equiv 0$. Consequently,

$$
\left\{p \in M \mid L(p) \neq L^{\prime}(p)\right\} \subseteq V
$$

It leads to the proposition.

Proposition 2.3. Let M^{n} be a pseudo-parallel Legendrian submanifold of Sasakian space form $\widetilde{M}^{2 n+1}(c)$ with flat normal bundle, then for any vector fields $X, Y \in T M$ we have

$$
R(X, Y) \phi H=L\{g(\phi H, X) Y-g(\phi H, Y) X)\}
$$

Here $H=\frac{1}{n}$ trh is the mean curvature vector.
Proof. Let $\left\{e_{1}, \cdots, e_{n}\right\}$ be a local orthonormal frame of M, Z unit vector field of $T_{p} M$ for $p \in M$. For any vector U on M, using (2.6), we obtain from (2.14)

$$
\begin{align*}
g\left(R(X, Y) Z, A_{\phi W} U\right) & +g\left(R(X, Y) W, A_{\phi Z} U\right) \\
= & L\left\{g(Y, Z) g\left(A_{\phi X} W, U\right)-g(X, Z) g\left(A_{\phi Y} W, U\right)\right. \tag{2.15}\\
& \left.+g(Y, W) g\left(A_{\phi X} Z, U\right)-g(X, W) g\left(A_{\phi Y} Z, U\right)\right\} .
\end{align*}
$$

Taking $W=U=e_{j}$ in (2.15), we obtain

$$
\begin{aligned}
g\left(R(X, Y) Z, A_{\phi e_{j}} e_{j}\right)+ & g\left(R(X, Y) e_{j}, A_{\phi Z} e_{j}\right) \\
= & L\left\{g(Y, Z) g\left(A_{\phi X} e_{j}, e_{j}\right)+g\left(Y, e_{j}\right) g\left(A_{\phi X} Z, e_{j}\right)\right. \\
& \left.-g(X, Z) g\left(A_{\phi Y} e_{j}, e_{j}\right)-g\left(X, e_{j}\right) g\left(A_{\phi Y} Z, e_{j}\right)\right\} .
\end{aligned}
$$

Assume now that $\left\{\lambda_{j}\right\}_{j=1}^{n}$ are the eigenvalues of $A_{\phi Z}$ corresponding to frame $\left\{e_{j}\right\}_{j=1}^{n}$. Using (2.6) and (2.7), we get

$$
\begin{aligned}
-g\left(R(X, Y) A_{\phi e_{j}} e_{j}, Z\right)+ & \lambda_{j} g\left(R(X, Y) e_{j}, e_{j}\right) \\
= & L\left\{g(Y, Z) g\left(A_{\phi e_{j}} e_{j}, X\right)+g\left(Y, e_{j}\right) g\left(A_{\phi Z} e_{j}, X\right)\right. \\
& \left.-g(X, Z) g\left(A_{\phi e_{j}} e_{j}, Y\right)-g\left(X, e_{j}\right) g\left(A_{\phi Z} e_{j}, Y\right)\right\} \\
= & L\left\{g(Y, Z) g\left(A_{\phi e_{j}} e_{j}, X\right)+\lambda_{j} g\left(Y, e_{j}\right) g\left(e_{j}, X\right)\right. \\
& \left.-g(X, Z) g\left(A_{\phi e_{j}} e_{j}, Y\right)-\lambda_{j} g\left(X, e_{j}\right) g\left(e_{j}, Y\right)\right\} .
\end{aligned}
$$

i.e.

$$
-g\left(R(X, Y) A_{\phi e_{j}} e_{j}, Z\right)=L\left\{g(Y, Z) g\left(A_{\phi e_{j}} e_{j}, X\right)-g(X, Z) g\left(A_{\phi e_{j}} e_{j}, Y\right)\right\} .
$$

Therefore

$$
\begin{aligned}
g(R(X, Y) \phi H, Z) & =-\frac{1}{n} \sum_{j=1}^{n} g\left(R(X, Y) A_{\phi e_{j}} e_{j}, Z\right) \\
& =L\{g(Y, Z) g(\phi H, X)-g(X, Z) g(\phi H, Y)\} .
\end{aligned}
$$

It completes the proof of proposition.

3. MAIN RESULTS

Theorem 3.1. Let M^{n} be a Legendrian submanifold of Sasakian space form $\widetilde{M}^{2 n+1}(c)(c \leq 1)$ with flat normal bundle, then M^{n} is pseudo-parallel if and only if it is semi-parallel or totally geodesic.

Proof. By the curvature tensor (2.5) of \widetilde{M}, for any $X, Y \in T M$ we have

$$
\widetilde{R}(X, Y) \phi H=\frac{c+3}{4}(g(Y, \phi H) X-g(X, \phi H) Y)
$$

Since $R^{\perp}=0$, the Ricci equation reduces to $\left[A_{\phi X}, A_{\phi Y}\right]=0$, which implies $\widetilde{R}(X, Y) \phi H=R(X, Y) \phi H$ in view of (2.11). So, by Proposition 2.3 we have

$$
\left(L+\frac{c+3}{4}\right)(g(\phi H, Y) X-g(\phi H, X) Y)=0 .
$$

It yields $L=-\frac{c+3}{4}$ or $H=0$.
When $L=-\frac{c+3}{4}$, if $c=-3$, it means that $L=0$. If $c \neq-3$, i.e. $L \neq 0$, then it is easy to get

$$
\begin{equation*}
-g(Y, Z) A_{\phi X} W+g(X, Z) A_{\phi Y} W-g(Y, W) A_{\phi X} Z+g(X, W) A_{\phi Y} Z=0 \tag{3.16}
\end{equation*}
$$

due to (2.14). Thus, from (3.16) and making use of analogous argument to Proposition 2.2, we have $h=0$, that is, M is totally geodesic.

Next we assume that $L \neq-\frac{c+3}{4}$, then $H=0$. By (2.5), for any vector X, Y, Z tangent to M,

$$
\begin{equation*}
\widetilde{R}(X, Y) Z=\frac{c+3}{4}(g(Y, Z) X-g(X, Z) Y \tag{3.17}
\end{equation*}
$$

By making use of (2.14) and (3.17), we have

$$
\begin{align*}
\left(\frac{c+3}{4}-L\right)\{ & -g(Y, Z) A_{\phi X} W+g(X, Z) A_{\phi Y} W \tag{3.18}\\
& \left.-g(Y, W) A_{\phi X} Z+g(X, W) A_{\phi Y} Z=0\right\}=0 .
\end{align*}
$$

If we set $X=W=e_{i}$, and sum over $i=1, \cdots, n$, using that $H=0$, we obtain $L=\frac{c+3}{4}$ or $A_{\phi Y} Z=0$ for any Y and Z. The second case means that M is totally geodesic. Assume in following $L=\frac{c+3}{4}$. Notice that in [14] A. Yildiz et al gave an necessary condition for a minimal pseudo-parallel C-totally real submanifold to be totally geodesic is $L n-\frac{1}{4}(n(c+3)+c-1) \geq 0$. Therefore, in this case, M^{n} is also totally geodesic.

Conversely, if M is semi-parallel or totally geodesic, obviously it is trivial pseudoparallel.

For a constant curvature manifold if its normal bundle is flat, Cartan, E. proved the following well-known fact (see [6]):

Lemma 3.2 (Cartan, E). Let M^{n} be a submanifold of constant curvature space $\widetilde{M}^{n+k}(c),\left\{\xi_{\alpha}\right\}$ local orthogonal normal vector fields, and $\left\{h^{\alpha}\right\}$ the second fundamental forms corresponding to $\left\{\xi_{\alpha}\right\}$. Then in every point of M, all the H^{α} are mutually diagonalizable if and only if the normal bundle of M is flat.

By Lemma 3.2, for any $p \in M$ there exists a local orthogonal frame $\left\{e_{i}\right\}$ of M^{n} such that all the second fundamental form tensors are mutually diagonalizable, namely, for any unit normal vector field N,

$$
A_{N}\left(e_{i}\right)=\lambda_{i}^{N} e_{i}
$$

where λ_{i}^{N} are the principle curvatures of M with respect to N.

Theorem 3.3. For $n \geq 2$, let M^{n} be a Legendrian submanifold of Sasakian space form $\widetilde{M}^{2 n+1}(c)$ with flat normal bundle. If M^{n} is pseudo-parallel, then $L=\frac{c+3}{4}$ or M is minimal.

Proof. For a Legendrian submanifold M we may choose an orthonormal basis of $T_{p}^{\perp} M$ of the form $\left\{e_{n+1}=\phi e_{1}, \cdots, e_{2 n}=\phi e_{n}, e_{2 n+1}=\xi\right\}$. For any $i, j \in$ $\{1, \cdots, n\}$, denote λ_{i}^{n+j} by the principle curvature with respect to normal vector field ϕe_{j}, i.e.,

$$
\begin{equation*}
A_{\phi e_{j}} e_{i}=\lambda_{i}^{n+j} e_{i} \tag{3.19}
\end{equation*}
$$

Thus in this case the mean curvature vector can be written as

$$
H^{n+j}=\frac{1}{n} \sum_{i} \lambda_{i}^{n+j}
$$

In view of (3.18), setting $X=e_{i}, Y=e_{j}, Z=e_{k}$ and $W=e_{l}$, we have

$$
\left(\frac{c+3}{4}-L\right)\left\{\delta_{i l} A_{\phi e_{j}} e_{k}-\delta_{j k} A_{\phi e_{i}} e_{l}+\delta_{i k} A_{\phi e_{j}} e_{l}-\delta_{j l} A_{\phi e_{i}} e_{k}\right\}=0
$$

where $g\left(e_{i}, e_{j}\right)=\delta_{i j}$ and $1 \leq i, j, k, l \leq n$. Using (3.19), we obtain

$$
\left(\frac{c+3}{4}-L\right)\left\{\lambda_{k}^{n+j} \delta_{i l} e_{k}-\lambda_{l}^{n+i} \delta_{j k} e_{l}+\lambda_{l}^{n+j} \delta_{i k} e_{l}-\lambda_{k}^{n+i} \delta_{j l} e_{k}\right\}=0
$$

Moreover, we have

$$
\begin{equation*}
\left(\frac{c+3}{4}-L\right)\left\{\lambda_{k}^{n+j} \delta_{i l} \delta_{k s}-\lambda_{l}^{n+i} \delta_{j k} \delta_{l s}+\lambda_{l}^{n+j} \delta_{i k} \delta_{l s}-\lambda_{k}^{n+i} \delta_{j l} \delta_{k s}\right\}=0 \tag{3.20}
\end{equation*}
$$

If we assume $j=s, i=k$ in (3.20), it reduces to

$$
\left(\frac{c+3}{4}-L\right)\left\{\lambda_{i}^{n+i} \delta_{i l}-\lambda_{l}^{n+i} \delta_{i l}+\lambda_{l}^{n+l}-\lambda_{i}^{n+i} \delta_{i l}\right\}=0
$$

Further, by summing over $i=1, \cdots, n$, we have

$$
\begin{equation*}
\left(\frac{c+3}{4}-L\right)\left\{\sum_{i} \lambda_{i}^{n+i} \delta_{i l}-\lambda_{l}^{n+l}+n \lambda_{l}^{n+l}-\sum_{i} \lambda_{i}^{n+i} \delta_{i l}\right\}=0 \tag{3.21}
\end{equation*}
$$

Because it follows from (2.7) that

$$
\lambda_{i}^{n+l}=g\left(A_{\phi e_{l}} e_{i}, e_{i}\right)=g\left(A_{\phi e_{i}} e_{i}, e_{l}\right)=\lambda_{i}^{n+i} \delta_{i l}
$$

therefore Equation (3.21) implies

$$
\begin{equation*}
\left(\frac{c+3}{4}-L\right) \lambda_{l}^{n+l}=0 \tag{3.22}
\end{equation*}
$$

On the other hand, using (3.19), it follows from (2.15) that

$$
\begin{align*}
-\lambda_{s}^{n+l} R_{i j k s}-\lambda_{s}^{n+k} R_{i j l s}=L\{ & -\delta_{j k} \delta_{l s} \lambda_{l}^{n+i}+\delta_{i k} \delta_{l s} \lambda_{l}^{n+j} \tag{3.23}\\
& \left.-\delta_{j l} \delta_{k s} \lambda_{k}^{n+i}+\delta_{i l} \delta_{k s} \lambda_{k}^{n+j}\right\}
\end{align*}
$$

Since

$$
\begin{equation*}
R_{i j k s}=\frac{c+3}{4}\left(\delta_{j k} \delta_{i s}-\delta_{i k} \delta_{j s}\right), \quad R_{i j l s}=\frac{c+3}{4}\left(\delta_{j l} \delta_{i s}-\delta_{i l} \delta_{j s}\right), \tag{3.24}
\end{equation*}
$$

by substituting (3.24) into (3.23), we get

$$
\begin{align*}
& -\frac{c+3}{4}\left\{\lambda_{s}^{n+l}\left(\delta_{j k} \delta_{i s}-\delta_{i k} \delta_{j s}\right)+\lambda_{s}^{n+k}\left(\delta_{j l} \delta_{i s}-\delta_{i l} \delta_{j s}\right)\right\} \tag{3.25}\\
& \quad=L\left\{-\delta_{j k} \delta_{l s} \lambda_{l}^{n+i}+\delta_{i k} \delta_{l s} \lambda_{l}^{n+j}-\delta_{j l} \delta_{k s} \lambda_{k}^{n+i}+\delta_{i l} \delta_{k s} \lambda_{k}^{n+j}\right\}
\end{align*}
$$

In the same way, putting $i=k, j=s$ and summing over $i=1, \cdots, n$ and $j=$ $1, \cdots, n$ in (3.25), respectively, we have

$$
\begin{equation*}
\frac{c+3}{4} H^{n+l}=L \lambda_{l}^{n+l} \tag{3.26}
\end{equation*}
$$

Combing (3.26) with (3.22), we concluded that if $\left(L-\frac{c+3}{4}\right) H^{n+l}=0$. This completes the proof of theorem.

It is easy to show the following corollary from (3.26):
Corollary 3.4. For $n \geq 2$ and $c \neq-3$, let M^{n} be a Legendrian submanifold of Sasakian space form $\widetilde{M}^{2 n+1}(c)$ with flat normal bundle. If M^{n} is semi-parallel then it is a minimal submanifold.

In [14, Corollary 6], the authors showed that for a minimal Legendrian submanifold M^{n} of Sasakian space form $\widetilde{M}^{2 n+1}(c)$, if it is semi-parallel and satisfies $n(c+3)+c-1 \leq 0$, then it is totally geodesic. Thus by Corollary 3.4 , we have the following corollary:

Corollary 3.5. For $n \geq 2$ and $c<-3$, let M^{n} be a Legendrian submanifold of Sasakian space form $\widetilde{M}^{2 n+1}(c)$ with flat normal bundle. If M^{n} is semi-parallel then it is totally geodesic.

Note that Blair proved the following conclusion:
Theorem 3.6 ([4]). Let M^{n} be a minimal C-totally real submanifold of $(2 n+$ 1)-Sasakian space form $\widetilde{M}(c)$. Then the following are equivalent:

1) M^{n} is totally geodesic,
2) M^{n} is of constant curvature $K=\frac{1}{4}(c+3)$,
3) $S=\frac{1}{4}(n-1)(c+3)$,
4) $\kappa=\frac{1}{4} n(n-1)(c+3)$,
where S and κ are the Ricci curvature and scalar curvature of M, respectively.
Since the normal bundle is flat, M^{n} is of constant curvature $K=\frac{c+3}{4}$, in view of Corollary 3.4, we have

Corollary 3.7. Let M^{n} be a Legendrian submanifold of Sasakian space form $\widetilde{M}^{2 n+1}(c)(c \neq-3)$ with flat normal bundle. If M^{n} is semi-parallel the following conclusions are equivalent:

1) M^{n} is totally geodesic,
2) $S=\frac{1}{4}(n-1)(c+3)$,
3) $\kappa=\frac{1}{4} n(n-1)(c+3)$.

Now recall that an non-totally geodesic Legendrian H-umbilical submanifold M^{n} of Sasakian manifold $\widetilde{M}^{2 n+1}$ is a Legendrian submanifold and its second fundamental form satisfies the following forms:

$$
\begin{align*}
& h\left(e_{1}, e_{1}\right)=\lambda \phi e_{1}, h\left(e_{2}, e_{2}\right)=\cdots=h\left(e_{n}, e_{n}\right)=\mu \phi e_{1}, \\
& h\left(e_{1}, e_{j}\right)=\mu \phi e_{j}, h\left(e_{j}, e_{k}\right)=0,2 \leq j \neq k \leq n, \tag{3.27}
\end{align*}
$$

for some suitable functions λ and μ with respect to some suitable orthonormal local frame field $\left\{e_{i}\right\}$ of M [12].

Theorem 3.8. Assume that M^{n} is a Legendrian H-umbilical submanifold of Sasakian space form $\widetilde{M}^{2 n+1}(c)$ with flat normal bundle connection. If M^{n} is pseudo-parallel then either $L=\frac{c+3}{4}$, or $n=1$.

Proof. We consider $\left\{e_{1}, \cdots, e_{n}\right\}$ as (3.27), then from (3.18) we get

$$
\begin{equation*}
\left(\frac{c+3}{4}-L\right)\left\{\delta_{i l} A_{\phi e_{j}} e_{k}-\delta_{j k} A_{\phi e_{i}} e_{l}+\delta_{i k} A_{\phi e_{j}} e_{l}-\delta_{j l} A_{\phi e_{i}} e_{k}\right\}=0 . \tag{3.28}
\end{equation*}
$$

Assume that $j=1$ and $i=k$ in (3.28), a straightforward calculation implies

$$
\begin{equation*}
\left(\frac{c+3}{4}-L\right)\left\{(n-1)(\lambda-\mu) e_{1}+n \mu \sum_{l=2}^{n} e_{l}\right\}=0 \tag{3.29}
\end{equation*}
$$

If $L \neq \frac{c+3}{4}$ then the above equation implies that $\mu=0$ and $(n-1)(\lambda-\mu)=0$ since $\left\{e_{i}\right\}$ is orthonormal, that is, $n=1$.

REFERENCES

[1] Asperti, A. C., Lobos, G. A., \& Mercuri, F. (2002). Pseudo-parallel immersions in space forms. Math. Contemp., 17, 59-70.
[2] Asperti, A. C., Lobos, G. A., \& Mercuri, F. (2002). Pseudo-parallel submanifolds of a space form. Adv. Geom., 2, 57-71.
[3] Blair, D. E. (2002). Rimemannian geometry of contact and symplectic manifolds. Birkhäuser.
[4] Blair, D. E. (1976). Contact manifolds in riemannian geometry. Lect Notes Math 509. Berlin Heibelberg New York: Springer.
[5] Chacón, P. M., \& Lobos, G. A. (2009). Pseudo-parallel Lagrangian submanifolds in complex space forms. Differential Geometry and Its Applications, 27, 137-145.
[6] Chen, B. Y. (1973). Geometry of submanifolds. New York: Dekker.
[7] Deszcz, R. (1992). On pseudosymmetric spaces. Bull. Belg. Math. Soc., 44, 1-34.
[8] Dillen, F., \& Varancken, L. (1990). C-totally real submanifolds of Sasakian space forms. J. Math. Pure. Appl., 69, 85-93.
[9] Lobos, G. A. (2002). Pseudo-parallel surfaces in space forms (pp.197-204). In Differential Geometry, Valencia (2001). World Scientific Publishing, River Edger, NJ.
[10] Lobos, G. A., \& Tojeiro, R. (2006). Pseudo-parallel submanifolds with flat normal bundle of space forms. Glasg. Math. J., 48, 171-177.
[11] Lobos, G. A., \& Ortega, M. (2004). Pseudo-parallel real hypersurfaces in complex space forms. Bull. Korean. Math. Soc., 41, 609-618.
[12] Mihai, I., \& Rădulescu, I. N. (2011). An improved Chen-Ricci inequality for Legendrian submanifolds in Sasakian space forms. J. Adv. Math. Stud., 4(2), 51-58.
[13] Yano, K., \& Kon, M. (1984). Structures on manifolds. World Scientific: Singapore.
[14] Yildiz, A., Muranthan, C., Arslan, K., \& Ezentas, R. (2007). C-totally real pseudo-parallel submanifolds of Sasakian space forms. Monatsh. Math., 151, 247-256.

[^0]: Chen X., \& Yang X. (2014). Pseudo-Parallel Legendrian Submanifolds With Flat Normal Bundle of Sasakian Space Forms. Progress in Applied Mathematics, 7(1), 9-19. Available from: URL: http://www.cscanada.net/index.php/pam/article/. DOI: http://dx.doi.org/10.3968/3002

