
62Copyright © Canadian Research & Development Center of Sciences and Cultures

ISSN 1923-841X [Print]
ISSN 1923-8428 [Online]

www.cscanada.net
www.cscanada.org

International Business and Management
Vol. 12, No. 3, 2016, pp. 62-70
DOI:10.3968/8543

Ratio Testing for Changes in the Long Memory Indexes

CAO Wenhua[a],*; JIN Hao[a],[b]

[a]College of Science, Xi’an University of Science and Technology, Xi’an, 
China.
[b]Associate Professor, College of Management, Xi’an University of 
Science and Technology, Xi’an, China.
*Corresponding author.

Supported by National Natural Science Foundation of China (71103143, 
71473194, 2013KJXX-40).

Received 26 March 2016; accepted 22 May 2016
Published online 30 June 2016

Abstract
This paper considers the problem of detecting for breaks 
in the long memory indexes of Gaussian observations 
having long-range dependence. Under the null hypothesis, 
the asymptotic distribution of the proposed ratio tests 
converges to a functional of fractional Brownian motion. 
Under the alternative hypothesis, the ratio tests diverge 
to infinity as the sample size grows. These results show 
that the reject rate seriously depends on the magnitude of 
change points. Finally, the Monte Carlo study presents that 
our test has reasonably good size and power properties. 
Key words: Change point; Long memory series; 
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INTRODUCTION
The problem of testing for change points has an important 
issue in time series analysis since the change points 
are often interpreted as serious risks in econometrics 
and neglecting breaks can make radically misleading 
decisions. A vast amount of relevant articles including 
breaks in mean and variance have appeared in the 

literature. Gombay and Horvath (1990) derived asymptotic 
distribution of maximum likelihood tests for change point 
in the mean. Vogelsang (1994) detected a shift in the mean 
of a univariate time series and proved that the statistics 
are valid whether the errors are stationary or have a unit 
root. Jin, Tian, and Qin (2009) adopted subsampling tests 
for the mean change points with heavy-tailed innovations. 
Bai (2010) used the least squares method and the quasi 
maximum likelihood (QML) method to estimate breaks 
in means and in variances for panel data and found QML 
method was more efficient than the least squares even if 
there is no change in the variances. Qi, Duan, and Tian 
(2014) structured Bootstrap monitoring for mean changes 
of nonparametric regression models by wavelets and 
indicated that their procedure have good power and short 
detection delay in the monitoring of structural change 
of nonparametric regression models. The statistical 
literature on changes of variance started with (Hsu, Miller, 
& Wichern, 1974), they offered variance change point 
formulation as an alternative to the distribution to model 
stock returns. Wichern, Miller, and Hsu (1976) researched 
Changes of variance in first order autoregressive time 
series models with an application. Jin and Zhang (2011) 
employed the RCUSQ statistic to test variance changes 
in the linear autoregressive processes including AR(p) 
processes meanwhile autoregressive parameters shifts 
occur. Noorossana and Heydari (2012) considered a 
Maximum Likelihood Estimator (MLE) of estimating 
the time of a monotonic change in the variance of a 
normal quality characteristic, Numerical results revealed 
that the proposed estimator provides appropriate and 
robust estimation with regard to the magnitude and type 
of change. Li, Tian, Xiao, and Chen (2015) discussed 
variance change points detection in panel data models 
and proposed a CUSUM based statistic to test if there is a 
variance change point in panel data models. 

On the other hand, many scholars already have studied 
the innovations which are long memory series for a long 
time and one of the focus is on estimating parameters 
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and detecting change points. The phenomenon of long 
memory has appeared to be relatively common and widely 
raised the attention of people in the past decades, which 
had been observed in several areas of application a long 
time before stochastic model were known. Hidalgo, Peter, 
and Robinson (1996) tested structural changes in a long 
memory environment in the case of certain nonstochastic 
and stochastic regressors models. Wang (2009) utilized 
the GPH estimation of spatial long memory parameter 
to investigate stationary long memory random fields. 
Shao (2011) proposed a simple testing procedure to test 
for a change point in the mean of a possibly long range 
dependent time series and estimated memory indexes 
with Local Whittle method, the test can be used to 
discriminate between a stationary long memory and short 
range dependent time series with a change point in mean. 
Gustavo and Fotis (2015) adopted A Two-Stage Approach 
to analyse long memory series subject to structural 
change, which showed TSF methodology results in 
accurate and more robust forecasts when applied to long 
memory series with a break in the mean. These researches 
are in the case of constant indexes of long memory to 
analyse and study. In fact, it is possible to use models 
with long memory innovations including change points in 
indexes in a variety of practical problems.  

In this paper, the goal of the article is to detect change 
points with statistics to show the existence of change 
points in the long memory indexes. Therefore, the primary 
contributions of this paper include three aspects. First, we 
derive the asymptotic distribution of the proposed ratio tests 
convergence to a functional of fractional Brownian motion 
under the null hypothesis. Second, under the alternative 
hypothesis, the ratio tests diverge to infinity as the sample 
size grows. Third, the Monte Carlo study shows that our 
test has reasonably good size and power properties. 

The outline of the paper is organized as follows. 
Section 1 introduces some models, assumptions and test 
statistics. Section 2 contains the main results. Monte 
Carlo simulations are collected in Section 3. Then, draws 
a conclusion. Finally, all proofs are given in the appendix.

1 .   M O D E L ,  A S S U M P T I O N  A N D 
STATISTIC
In the last few decades, we have witnessed a rapid 
development for statistical inference of long range 
dependent (or long memory) time series. Beran (1994), 
Robinson (2003) among others for book-length treatments 
of this topic. Let

where L is the backward shift operator and ﹛εt﹜
is a mean zero covariance stationary dependent process. 
We say that the process ﹛zt﹜possesses long memory if 
d∈(0,0.5) and short memory if d∈(-0.5,0). 

In order to study a stochastic process ﹛yt﹜existing 
change points in indexes, we consider the following linear 
regression model given by:

where μ0 is an arbitrary constant, and zt is a stationary 
long memory series with index d∈(0,0.5).

The null hypothesis can be described as

00 : ddH = for 1, 2, , .t T= ⋅⋅⋅
The alternative hypothesis is

where τ* is unknown and [Tτ*] is the integer part of Tτ*, 
d0≠d1. For the purpose of asymptotic analysis, we make 
the following assumption. 

Assumption 1. There exists a d∈(0,0.5), such that as 
n→∞, then

where the symbol ⇒  signifies weak convergence of 
the associated probability measures, Cd is a positive and 
Bd(·) is the fractional Brownian motion. Marinucci and 
Robinson (1999) has given as follows: 

Where Г(·) is the Gamma function and W(s) is a 
standard Brownian motion. The assumption has been 
extensively studied in the literature; see, Davidson, Jame, 
De, and Robert (2000), Mandelbrot and Vanness (1968).

Before expressing the test statistics, let 
∧

tz , t=1,2,…,T 
be the residuals from the regression of yt on an constant. 
Then, let St be the following partial sum process:

Next, we can give some definitions about partial sum 
process respectively before and after break:
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where )1,0(∈Λ  and Λ∈τ , 
∧

τ  is estimation of τ .

2.  MAIN RESULTS 
Theorem 2.1. Suppose that Assumption 1 is true for zt 
under null hypothesis, then
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         is a fractional Brownian motion.
Remark 2.1. The result shows that the limiting 

distribution depends strongly on the long memory index d.
Theorem 2.2. Suppose that Assumption 1 is true for zt under alternative hypothesis, then

 (1) If 01 dd > , ττ ≥∗ , then ∞=Ξ )(τT ; ττ <∗ ,

                            .

 (2) If 10 dd > , ττ ≥∗ , then )1()( PT o=Ξ τ ; ττ <∗ , 

                            .

Then
                                                       .
Remark 2.2. These results show that statistics diverge 

to infinity as the sample size grows under the alternative 
hypothesis. It has also high power if the break is in both 
cases assumed to be from d0 to d1 or from d1 to d0.

3.  MONTE CARLO STUDY
In this section we conduct a simulation study to evaluate 
the test in section 1 and section 2. All simulations are 
based on 1000 replications. We report empirical rejection 
frequencies of the tests with T=500,800,1000 for tests run 
at α=0.95.

We consider the data generating processes, henceforth 
DGP’s, which satisfy:

where μ0=0.5 and the innovations zt is a stationary long 
memory series with indexes d. Subsequently, we consider 
the same model above allowing a change in index d: 

Where μ0=0.5 and d0,d1∈﹛0,0.1,0.2,0.3,0.4﹜, the 
specific numerical simulations are expressed as follows.
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Table 1
Empirical Size of Critical Value p=21.503

T

d 500 800 1000
0 0.039 0.046 0.058

0.1 0.047 0.057 0.069
0.2 0.058 0.052 0.055
0.3 0.040 0.043 0.045
0.4 0.036 0.041 0.053

We now discuss the main conclusions that can be 
drawn from three tables. First of all, the Table 1 shows 
the rejection rate are closed to 0.05 under null hypothesis 
and illustrates that ratio tests have a good size. Moreover, 
Tables 2-3 indicate the rejection rate are more greater with 
the larger distance between d0 and d1 under alternative 
hypothesis. If we set a value of d0, the power increases 
with declining of d1 in Table 2. Similarly, for a given 
value of d0, the power increases as d1 grows in Table 3. 
Meanwhile, it might be not intuitive that the power of 
breaks of equal distance, e.g. T=1000 and τ=0.3, the power 
is 0.243 when d is from 0.4 to 0.3, but the power is 0.171 
when d is from 0.1 to 0 in Table 2, the same situation as 
shown in Table 3. On the whole, ratio tests depend on 
sample sizes and memory indexes, it is able to reject the 
null hypothesis and accept the alternative hypothesis to 
prove the existence of change points. 

Table 2
Empirical Power of the Ratio Test (α=95%)

d0→d1 τ T

500 800 1000

0.3 0.278 0.302 0.243
0.4→0.3 0.5 0.267 0.245 0.254

0.7 0.258 0.220 0.250
0.3 0.352 0.328 0.322

0.4→0.2 0.5 0.316 0.319 0.306
0.7 0.300 0.294 0.280
0.3 0.520 0.470 0.479

0.4→0.1 0.5 0.486 0.455 0.528
0.7 0.454 0.468 0.452
0.3 0.663 0.638 0.633

0.4→0 0.5 0.625 0.609 0.622
0.7 0.610 0.617 0.614
0.3 0.235 0.248 0.238

0.3→0.2 0.5 0.233 0.216 0.230
0.7 0.211 0.230 0.226
0.3 0.328 0.334 0.320

0.3→0.1 0.5 0.324 0.328 0.331
0.7 0.335 0.318 0.323
0.3 0.430 0.429 0.432

To be continued
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To be continued

0.3→0 0.5 0.425 0.420 0.408
0.7 0.422 0.429 0.401
0.3 0.241 0.234 0.213

0.2→0.1 0.5 0.218 0.203 0.212
0.7 0.200 0.237 0.205
0.3 0.260 0.240 0.255

0.2→0 0.5 0.249 0.254 0.246
0.7 0.240 0.245 0.237
0.3 0.180 0.182 0.171

0.1→0 0.5 0.161 0.166 0.167
0.7 0.131 0.172 0.166

Table 3
Empirical Power of the Ratio Test (α=95%)

 d0→d1 τ T

500 800 1000

0.3 0.110 0.146 0.149
0→0.1 0.5 0.132 0.160 0.163

0.7 0.154 0.166 0.145
0.3 0.213 0.197 0.193

0→0.2 0.5 0.205 0.203 0.215
0.7 0.230 0.214 0.238
0.3 0.399 0.408 0.416

0→0.3 0.5 0.391 0.426 0.406
0.7 0.407 0.435 0.426
0.3 0.619 0.593 0.623

0→0.4 0.5 0.592 0.590 0.634
0.7 0.614 0.639 0.636
0.3 0.213 0.197 0.195

0.1→0.2 0.5 0.225 0.205 0.227
0.7 0.221 0.228 0.191
0.3 0.319 0.303 0.318

0.1→0.3 0.5 0.312 0.319 0.320
0.7 0.323 0.307 0.329
0.3 0.430 0.457 0.440

0.1→0.4 0.5 0.462 0.434 0.467
0.7 0.465 0.464 0.469
0.3 0.217 0.220 0.210

0.2→0.3 0.5 0.233 0.213 0.224
0.7 0.221 0.302 0.240
0.3 0.248 0.270 0.327

0.2→0.4 0.5 0.332 0.347 0.310
0.7 0.335 0.353 0.321
0.3 0.216 0.206 0.210

0.3→0.4 0.5 0.238 0.194 0.200
0.7 0.250 0.216 0.235

d0→d1 τ T

500 800 1000

Continued Table 4 clearly provides simulation evidence of its 
estimation in finite samples. for all power experiments we 
consider three different locations of the breakpoints, at the 
beginning (τ=0.3), the middle (τ=0.5) and the end (τ=0.7) 
of the sample period. Obviously, estimates of τ  depend 
on long memory series and different simple sizes. More 
precisely, the estimates are more accurate with the larger 
distance between d0 and d1, for example, T=1000 and 
τ=0.5, the estimate is 0.506 when d is from 0.4 to 0, but 
the estimate is 0.480 when d is from 0.4 to 0.3. The same 
situation at τ=0.3, and τ=0.7. In general, the estimators 
are close to the real values extremely. 

Table 4 
Estimating for Change Points

τ d0→d1 T

500 800 1000

0.3

0.4→0 0.331 0.326 0.351

0.4→0.1 0.298 0.314 0.307

0.4→0.2 0.306 0.284 0.290

0.4→0.3 0.257 0.277 0.301

0.5

0.4→0 0.501 0.490 0.506

0.4→0.1 0.489 0.479 0.484

0.4→0.2 0.487 0.482 0.507

0.4→0.3 0.438 0.461 0.480

0.7

0.4→0 0.691 0.679 0.700

0.4→0.1 0.693 0.643 0.710

0.4→0.2 0.695 0.656 0.688

0.4→0.3 0.637 0.651 0.686

CONCLUSION
In this paper, change points are considered in the long 
memory indexes detected by the ratio test in regression 
model. The asymptotic distribution of our test is Fractional 
Brownian motion under null hypothesis and is divergent 
as the sample size increases under alternative hypothesis. 
Moreover, the Monte Carlo studies have been conducted 
to investigate the performance of our test procedures and 
show the existence of change points in memory indexes 
may be unambiguous. Overall, the simulation results 
reveal the reject rate heavily depends on the magnitude of 
change points. 
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APPENDIX
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In a similar way, we obtain the denominator 
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