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Abstract 
This paper proposes a methodology for developing a 
coordinated aggregate production plan for manufacturers 
producing mult iple  products  a t  mult iple  plants 
simultaneously, in a centralized environment via data 
envelopment analysis (DEA). 
Based on demand forecast of the planning horizon, 
the central decision maker (DM) specifies the optimal 
combination of input resources required by the optimal 
output targets for each plant to keep the supply and 
demand in balance, and the accompanying transportation 
trips and volumes among distribution centers (DCs) 
or warehouse facilities. In this paper, we focus on an 
integrated production-transportation problem since 
production and transportation are two fundamental 
ingredients in the whole operation chain. We deal with 
multiple products manufactured in multiple plants.
The proposed mixed integer DEA models minimize 
both production costs and transportation costs. The 
capacity constraint for each plant is enforced by using the 
production possibility set theory. Finally, we validate our 
models by a numerical example and sensitivity analysis. 
Key words: Integrated production-transportation 
planning; Data envelopment analysis
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INTRODUCTION
We consider an integrated production and transportation 
planning problem: how to optimally determine aggregate 
production planning and transportation trips among 
distribution centers (DCs) and the corresponding 
t ranspor ta t ion  volumes ,  where  product ion  and 
transportation plan are considered simultaneously. 

The production decisions concerns how to allocate 
input resources and set output targets among different 
production units, while the transportation decisions 
work out how to transport superfluous outputs for one 
DC to other under-supply DCs when all these DCs are 
accommodated by the corresponding production unit. 
We are interested in making an integral decision to 
minimize the aggregate costs including production costs, 
here mainly referring to the costs of input resources, and 
transportation costs to satisfy each DC’s market demand.

In supply chain management, it concerns efficient 
policies related to purchasing raw materials from suppliers 
according to order or market forecast, transforming them 
into finished goods considering production capacity, 
and delivering them to end customer. Traditionally, the 
activities are optimized separately due to the intractability 
of large model. It is obvious that such pattern neglects the 
internal relation in the chain compared with optimizing 
these steps simultaneously since optimization of each step 
separately does not necessarily lead to the optimization 
of all steps in an integrated manner. That is especially 
true when we deal with multi-plant and multi-DC under 
a centralized environment, where mutual cooperation is 
permitted and often required as long as such decision is 
cost-efficient for each DC to meet its demand. 

Consequently, the coordinated operations of the main 
stages will lead to remarkable cost reductions for the 
company. For example, in a research of Libbey-Owens-
Ford Company (Martin et al., 1993), integrated approach 
saves nearly $2,000,000 compared with separated 
operations in annual cost. Another production-distribution 
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study for Procter&Gamble (P&G) company (Camm et al., 
1997) shows that integrated planning cuts down almost 
20% of total cost. Integrated production and planning 
has become a new branch of supply chain management 
(Hugos, 2011; Papageorgiu, 2009).

Our model differs from previous works in the 
technique to characterize production function. We assume 
no a priori information on production technology. In 
particular, this paper introduces data envelopment analysis 
(DEA), a nonparametric method to describe production 
process, into integrated production-transportation 
problem, which is a different approach compared to the 
previous works in this field. There have been many papers 
covering the integrated production-transportation problem 
in a tactical level, some of which include the management 
of inventory especially in multi-period situations. 
However, most of them link the production process with 
a priori production relationship. For example Zuo et al., 
(1991), Barbarosoğlu and Özgür (1999), Jayaraman and 
Pirkul (2001), Jain and Palekar (2005), Kanyalkar and 
Adil (2007) etc. propose models with production capacity 
or capacity expansion as consistent constraints; Tuy et al., 
(1993), Hochbaum and Hong (1996), Tuy et al., (1996), 
Kuno and Utsunomiya (1997; 2000), etc. explicitly draw 
on exogenous production functions. In fact, such valuable 
a priori information is not always available, which 
reduces the applicability of their models.

DEA is the one of the best modeling tools for providing 
a satisfactory solution. By using “satisfactory solution”, 
we imply that our model is based on limited information 
about production process that the decision maker (DM) 
could be able to secure. The characterization of functional 
dependency between inputs and outputs in a production 
process is not an easy undertaking in some applications. 
This becomes more severe when the dimensions of inputs 
and outputs increase as exemplifying the features of the 
modern manufacturing, which partially motivate the 
research of this paper. Besides, DEA technique helps to 
identify whether the production process is efficient or not. 

The rest of the paper is organized as follows. Section 
1 reviews the current literature on DEA-based production 
planning and integrated production-transportation 
problem. An integrated model of DEA-based production 
and transportation planning is proposed in section 2. An 
illustration of the model is given in section 3. Sensitivity 
analyses on the input’s and transportation price’s order of 
magnitude in section 4. Conclusions are drawn in the last 
section.

1.  LITERATURE REVIEW
Our paper relates to two bodies of research: The literature 
on integrated production-transportation and the literature 
on production planning based on DEA. 

Dhaenens-Flipo and Finke (2001) deals with a multi-
facility and multi-product planning problem, where 

production costs and transportation costs are regarded 
simultaneously. Simchi-Levi et al., (2004) gives a 
comprehensive review on the explicit production-
distribution (EPD) problems. Various EPD problems are 
classified by three criteria: decision level, integration 
structure and problem parameters. In this paper we 
focus on the production-transportation problems, one 
class of great attention. Kanyalkar and Adil (2007) 
present a linear programming model to overcome the 
weaknesses of sequential planning approaches in a 
multi-site environment, where specific factors, are 
considered for a consumer goods enterprise. Alemany et 
al., (2010) proposes a mixed-integer linear programming 
(MILP) model under a centralized ceramic tile sector. 
The objective function is to maximize total net profit 
while the master planning is determined in multi-
period and multi-item. Kopanos et al., (2012) develop 
a discrete/continuous-time MILP model in real-life 
semi-continuous food industries. They take alternative 
transportation modes, for example different kinds of 
trucks, into account. 

First put forward by Charnes et al., (1978) as a 
nonparametric method for estimating the relative 
efficiency of a group of homogenous decision making 
units (DMUs), DEA now has been widely applied to the 
public sector. Recently DEA has been applied to make 
production planning. This approach bases on history 
inputs and outputs data. Golany (1988) first presents an 
interactive multi-objective linear programming procedure 
to help the central DM decide realistic performance goals. 
Beasley (2003) puts forward an approach to maximizing 
average DMU efficiency while simultaneously deciding 
for all DMUs more acceptable results. Korhonen and 
Syrjänen (2004), like Golany, suggest a method to 
maximize the total amount of outputs of all DMUs by 
a multi-objective linear programming to find the most 
preferred allocating plan. Du et al., (2010) recommend two 
planning ideas for arranging new input-output mix. One 
is to optimize the average production efficiency, and the 
other is to maximizing total outputs while simultaneously 
minimizing the total inputs. As far as we are aware, there 
is no DEA-based work regarding integrated production-
transportation problem in the literature. Thus, the current 
paper suggests a new direction to address this problem.

2.  THE MODEL 
The problem we study can be graphically illustrated in 
Figure 1. There are several production plants, each of 
which is directly connected to a large-scale DC by a 
solid line. Each production plant has its own production 
plan. These solid lines indicate that all the goods are 
transported to the corresponding DC once finished. In 
addition, these DCs are inter-connected by the dotted 
lines, which indicate possible transportation trips. Here 
“possible” means transportation trips are needed depends 
on whether they are cost-effective. In Figure 1, each DC is 
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surrounded by some people. This indicates the predicted 
market demand in next period. Note that the transportation 
volume depends on the production plan we make and how 

is the DC’s market demand satisfied by the corresponding 
production plants. As a result, all production plants are 
connected together indirectly. 

 

Production plant

Production plant

Production plant

Production plant

DC

DC

DC

DC

Figure 1 
Graphical Representation of the Problem 

Our objective is to minimize total costs, including 
production costs taking place in production plants and 
transportation costs among DCs, while the transportation 
costs between production plants and DCs are neglected to 
highlight the other two kinds of costs. 

For modeling purpose, we assume there are n 
production plants (denoted as DMUj ( j=1,…,n)). History 
inputs and outputs data are stated as xh

ij (i=1,2,...m) and 
yh

ri (r=1,2,...s) for i-th input and r-th output of j-th DMU 
respectively. Here the data are non-negative and the 

superscript h stands for history data. xij (i=1,2,...m) and 
yrj (r=1,2,...srepresent i-th input and target r-th output 
of j-th DMU for the next period. They, as a whole, are 
the production plans for all DMUs in our integrated 
production-transportation problem. We use the notation 
drj for the j-th DC’s r-th market demand which can be 
predicted in advance, and t (r)

jk for the transportation volume 
of the r-th product from the j-th DC to the k-th DC. 
According to the problem description above, model (1) 
for the production-transportation planning is given. 
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where ci stands for the unit price of the i-th input, ejk 
for the unit transportation price from the j-th DC to the k-th 
DC. 

The objective function is the total costs. The first-
group and second-group constraints represent that new 
input-output combination must be enveloped by the 
production possibility set (PPS). Various retruns-to-scale 
(VRS) assumption (Banker et al., 1984) is indicated by 
the third-group constraints. Note that if the convexity 
constraints are deleted, then we get the model concerning 
constant return-to-scale (CRS) assumption (Charnes et 
al., 1978), which corresponds to model (2). The fourth-
group constraints in model (1) consider the outcome 
after transportation. They imply that the sum of each 
DC’s volume of products which are equal to the products 
produced locally and the net volume of products of 
transportations are able to satisfy the corresponding 

market demand, where ( )
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∑  implies the amount of r-th output to be transported 

from other DC to the j-th DC. The fifth-group constraints 
in model (1) impose restrictions on the DC to ensure this 
DC’s state of transportation for a certain kind of output. 
That means the state only belong to one of the three 
states, namely inward freight, outward freight and neither 
inward nor outward freight. Here, inward freight indicates 

transporting this certain kind of output from other DC 
to the under-considering DC, outward freight on the 
contrary, and the last state indicates zero transportation. As 
a consequence, this will prevent redundant conveyance, 
avoiding the appearance of both inward and outward 
freight at the same time. Since model (1) and (2) are 
so much alike except the convexity constraints, in the 
following we mainly deal with model (1) while similar 
results about model (2) can be achieved in analogous way. 

Note that the product of decision variables makes 
model (1) a non-linear programming. By introducing 
0-1 variables, model (1) is equivalently transformed to 
the following model (3), where ρ(i)

rj are binary variables 
and M is a sufficiently large positive number. After the 
transformation, model (3), equivalent to model (1), is a 
MILP. Model (2) can be transformed to a similar model 
except the convexity constraints; we omit it for simplicity 
in the following paper.
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Now we consider the solvability of model (3). To begin 
with, the specific definition of PPS in DEA is introduced. 
The general form for PPS is expressed as PPS={(x,y):x 
can produce y} .To maintain the uniformity in notation, 
Xh=(xh

ij)m×n and Yh=(yh
rj)s×n are the history inputs matrix and 

outputs matrix respectively, while x•j=(x1j,x2j,...xmj)
T and 

y•j=(y1j,y2j,...ymj)
T stand for the possible inputs and outputs 

for the j-th DMU based on the PPS determined by history 
data, where the superscript T represents transposition. 
Then different PPSs in DEA deriving from different 
returns-to-scale technologies are as follows where 
λ•j=(λ1j,λ2j,...λmj)
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y= (y1,y2,...ys) and x=(x1,x2,...xs). The overall PPS is defined 
as the Minkowski sum of n PPS’s. Therefore we will 
get the following sufficient and necessary condition for 
solvability.

Proposition 1: model (3) in the setting of VRS is 
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∈ = ≥ =∑ ∑ ∑ ∑ , where P is the overall producible 

output set for the central DM in VRS. In particular, model 
(2) is always solvable in the setting of CRS no matter 
what the exact value of drj is.

Proof. See appendix 
Proposition 1 gives a glimpse of the solvability 

of model (3). Besides it is beneficial to collect the 
influences of different PPSs, i.e., the influences of two 
return-to-scale technologies. Based on (4), (5) and the 
constraints in model (2) and (3), the following is evident: 
obj(VRS)≥obj(CRS) where obj(•)is the optimal objective 
value corresponding to different technologies. Different 
technologies impact on the construction of PPS, leading 
to different objective values when model (2) and (3) 
are based on the same history data and the same cost 
parameters. 

One significant characteristic of DEA-based production 
planning is that it always provides Pareto non-dominated 
plan, i.e., efficient plan. This can be found but not limited 
to the literatures, such as Lozano and Villa (2004), Du et 
al., (2010), and Amirteimoori and Kordrostami (2011). 
Similarly, the same thing holds true when it comes to this 
paper. Hence, we give the following property.

Property 2: The production plan from model (3) will 
guarantee that the new efficiency scores of all DMUs will 
reach one when estimated by the original PPS (model (2) 
owns the same result).

Proof. See appendix
It can be seen that the production plan is Pareto 

optimal (i.e., the production cost cannot be reduced if no 
output is sacrificed), or it contradicts that the production 
plan attains the minimum of (3). Therefore it should be 
rated as efficient by DEA models.

3.  EMPIRICAL ILLUSTRATION AND THE 
SENSITIVITY ANALYSIS
To better illustrate the proposed models in this paper, a 
set of production data consisting of ten DMUs with two 
inputs and two outputs is employed, which is extracted 
from Lozano and Villa (2004). This data are treated as 
history production mix. We use hypothetical data for 
unit transportation price among different DCs and unit 
price for each input. To move a step further, we perform 
sensitivity analysis to the orders of the magnitude of the 
unit transportation price and unit price for each input to 

explore their influence on production schedule. Here we 
assume that unit price for each input is in the same order 
of magnitude, while the unit transportation price is also in 
the same order of magnitude which is not necessary the 
same as that for unit input price. The sensitivity analysis 
focuses on the ratio of order of magnitude of input price 
to that of for transportation. 

We first generate two unit prices for input at random; 
then again randomly generate the unit transportation 
price among the 10 DCs in the same magnitude. 
Then the transportation price matrix is magnified and 
minified in equal proportion to obtain different matrixes 
corresponding to different magnitudes. With regard to 

market demand, we suppose that 
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both in VRS and CRS, namely the market demand for 
next time period equals to the history output. In the short 
run, a mature market can be seen in a comparatively 
stable condition, which means the fluctuation in market 
demand is quite small. Hence, it is understandable to treat 
the market demand as unchanged. Besides in practice, 
consensus is reached about the above idea among most of 
the business entities, because it helps business entities to 
make a rough production planning at the very beginning. 
This is also a particular situation in Proposition 1, 
which will be get when setting λj=1/n( j=1,...,n) and 

1
=

n
h

j rj r
j

y y nλ
=

∑  in VRS, also a particular situation in CRS. 

The history data for each output is regarded as a known 
permutation; then a random arrangement is obtained based 
on it. Thus the market demand for each output of each 
DC is achieved while the requirement in Proposition 1 is 
satisfied. The unit price for each input, unit transportation 
price among each DC, and predicted market demand 
for next period are listed in Appendix. The sensitivity 
analysis is discussed in 9 scenes, that is magnitudes of 
the ratio of transportation price to input price are 10000, 
1000, 100, 10, 1, 0.1, 0.01, 0.001, 0.0001 respectively. 

The optimal objective value of model (3) is given in 
Table 1. Table 1 shows that as the magnitudes of ratio of 
transportation price to input price change from 10000 to 
0.0001 the optimal objective value in both PPS declines. 
As the transportation price decreases, it is cost-effective 
to transport superfluous output for certain DC to DCs 
whose outputs are not enough. If every DMU choose to 
meet its DC’s market demand alone, advantages of scale 
production are abandoned. In particular, the minimum 
cost in CCR is always smaller than that in BCC. This has 
to do with the different PPSs corresponding to different 
returns to scale. When the history production data is 
determined, PPS in CCR is more efficient than that in 
BCC. According to Property 2, the efficiency score of 
production schedule will reach 1; then the schedule will 
lie on the production frontier. Hence, schedule in CCR 
more efficient than that in BCC, which leads to less costs 
in CCR compared to BCC. 



69 Copyright © Canadian Academy of Oriental and Occidental Culture

LIU Fang; BI Gongbing; DING Jingjing (2014). 
Canadian Social Science, 10(3), 64-74

Table 1 
The Optimal Value of Model (3) in 9 Scenes

SCENE 1 SCENE 2 SCENE 3 SCENE 4 SCENE 5 SCENE 6 SCENE 7 SCENE 8 SCENE 9

CCR 64.602 86 64.602 86 64.602 86 61.6381 58.225 38 57.672 83 57.5567 57.545 09 57.543 97

BCC 230.5334 92.807 4 75.978 13 68.587 52 65.096 83 64.5082 64.449 34 64.443 45 64.442 87

Table 2 
Input Schedule for Next Period in CCR

DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 DMU7 DMU8 DMU9 DMU10

SCENE1 10.857 8 9.6 8.75 9.6 3.2 4 10.5 6 6

13.143 8 9.6 3.75 9.6 3.2 3.333 4.5 7.5 5

SCENE2 10.857 8 9.6 8.75 9.6 3.2 4 10.5 6 6

13.143 8 9.6 3.75 9.6 3.2 3.333 4.5 7.5 5

SCENE3 10.857 8 9.6 8.75 9.6 3.2 4 10.5 6 6

13.143 8 9.6 3.75 9.6 3.2 3.333 4.5 7.5 5

SCENE4 10.8 8 7 6 9.6 1.2 3.2 8.75 6 6

18 8 6.5 10 9.6 2 3.2 3.75 7.5 5

SCENE5 14.667 7.933 8 6 9.6 0 1.067 2.133 6 6

24.444 7.9 6.667 10 9.6 0 1.067 3.556 7.5 5

SCENE6 6.8 6 14 2 4 2 12 7.2 6 6

9.667 5 11.667 1.667 3.333 1.667 10 12 5 5

SCENE7 6.8 6 4 10 4 4 12 7.2 6 6

9.667 5 3.333 8.333 3.333 3.333 10 12 5 5

SCENE8 6.8 6 14 2 4 2 12 7.2 6 6

9.667 5 11.667 1.667 3.333 1.667 10 12 5 5

SCENE9 10 10 4 10 12 2 4 2 6 6

15.833 8.333 3.333 8.333 10 1.667 3.333 1.667 7.5 5

Table 3
Input Schedule for Next Period in BCC

DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 DMU7 DMU8 DMU9 DMU10

SCENE1 13 8 12 6 12 6 6 11.333 6 6

8 8 10 10 10 10 10 7.333 10 10

SCENE2 13 8 12 6 12 6 6 11.333 6 6

8 8 10 10 10 10 10 7.333 10 10

SCENE3 13 8 8 6 8 6 6 11.333 6 6

8 8 8 10 8 10 10 7.333 10 10

SCENE4 6 8 6 6 8 6 6 8.667 6 6

10 8 10 10 8 10 10 8.667 10 10

SCENE5 6 7 6 6 8 6 6 6 6 6

10 9 10 10 8 10 10 10 10 10

SCENE6 6 7 6 6 8 6 6 6 6 6

10 9 10 10 8 10 10 10 10 10

SCENE7 6 7 6 6 8 6 6 6 6 6

10 9 10 10 8 10 10 10 10 10

SCENE8 6 7 6 6 8 6 6 6 6 6

10 9 10 10 8 10 10 10 10 10

SCENE9 6 7 6 6 8 6 6 6 6 6

10 9 10 10 8 10 10 10 10 10
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Production plan for next period is given in Table 2 
and Table 3 for 9 scenes. Table 2 exhibits that the input 
schedule for scene1 to scene3 is the same, since the 
transportation price is larger than input price. Therefore 
the optimal plan for scene1 to scene3 is meeting every 
DC’s market demand independently. Scene3, scene4, 
scene5, scene6 and scene7 have different input schedules 
because of magnitudes of transportation price. Scene6, 
scene8 have the same input schedule, which is a result of 
the less change in transportation price compared to the 
constant input price. Even though the input schedule in 

scene9 is different from that in scene8, the minimum cost 
in Table 1 changes little. The difference between them 
is caused by the change of transportation price. Table 3 
comes to similar conclusion. Scene1, scene2 have the 
same schedule, while scene5, scene6, scene7, scene8, 
and scene9 also have the same input schedule. Schedules 
among scene3, scene4 and scene5 are different. And the 
related transportation plans are given in Table 4, where 
t(i,j,k) stands for the i-th output transportation amount 
from DCj to DCk. 

Table 4
Transportation Plans for Model (3)

CCR BCC

SCENE1 No transportation t(1,9,1)=1

SCENE2 No transportation t(1,9,1)=1

SCENE3 No transportation t(1,8,1)=1,t(2,6,3)=1,t(2,7,5)=1

SCENE4 t(1,1,8)=1, t(1,5,7)=0.8, t(2,1,6)=1.4 t(1,6,1)=3, t(2,4,3)=2, t(2,6,3)=1, t(2,7,5)=1,t(2,8,1)=1

SCENE5 t(1,1,8)=4.222, t(1,3,6)=1, t(1,5,7)=1.6, t(2,1,6)=2, 
t(2,1,7)=1.333, t(2,8,2)=0.067

t(1,2,8)=1, t(1,6,1)=3, t(2,4,3)=2, t(2,6,3)=1, t(2,7,5)=1, 
t(2,8,1)=1, t(2,8,2)=1

SCENE6 t(1,3,4)=4, t(1,7,1)=3, t(1,7,9)=1, t(2,3,6)=1, t(2,7,5)=4, 
t(2,8,1)=0.6, t(2,8,2)=2

t(1,2,8)=1, t(1,6,1)=3, t(2,4,3)=2, t(2,6,3)=1, t(2,7,5)=1, 
t(2,8,1)=1, t(2,8,2)=1

SCENE7 t(1,6,3)=1, t(1,7,1)=3, t(1,7,9)=1, t(2,4,3)=4, t(2,7,5)=4, 
t(2,8,1)=0.6, t(2,8,2)=2

t(1,2,8)=1, t(1,6,1)=3, t(2,4,3)=2, t(2,6,3)=1, t(2,7,5)=1, 
t(2,8,1)=1, t(2,8,2)=1

SCENE8 t(1,6,3)=1, t(1,7,1)=3, t(1,7,9)=1, t(2,4,3)=4, t(2,7,5)=4, 
t(2,8,1)=0.6, t(2,8,2)=2

t(1,2,8)=1, t(1,6,1)=3, t(2,4,3)=2, t(2,6,3)=1, t(2,7,5)=1, 
t(2,8,1)=1, t(2,8,2)=1

SCENE9 t(1,2,3)=1, t(1,2,8)=1, t(1,5,8)=4, t(2,1,6)=1, t(2,4,3)=4 t(1,2,8)=1, t(1,6,1)=3, t(2,4,3)=2, t(2,6,3)=1, t(2,7,5)=1, 
t(2,8,1)=1, t(2,8,2)=1

Table 4 shows the detailed arrangements about the 
transportation plan. Allowing for the unit transportation 
price matrix in Appendix, the top 5 lowest unit 
transportation price are between DC5 and DC7, DC1 and 
DC8, DC3 and DC6, DC3 and DC4, and DC1 and DC6 
respectively. Take the transportation plan in CCR as an 
example. When the transportation price is too high in 
comparison with input price, (i.e. in scene1, scene2, and 
scene3), there is no transportation trips among all the 
DCs. When the transportation trips first appear in scene4, 
all of them belong to the top 5 lowest unit transportation 
price. In scene5, 4 trips belong to the top 5, accounting for 
80% trips. As transportation price declines, trips which 
are outside of the top 5 come out. Similar conclusions 
can be found in BCC. Note that transportation trips 
first appear in scene1 in BCC although transportation 
price is relatively high. This is because the strict 
requirements regarding variable returns to scale, which 
makes transportation necessary to meet market demand 
if the DMU can’t produce enough outputs under current 
production technology. Excluding this particular situation, 
it is worth mentioning that in all the two kinds of PPSs, 
transportation trips in scene1, scene2, scene3, and scene4 
all belong to the top 5. What’s more, the amount related 
with such trips is relatively larger than other trips. This 
makes sense since the objective is to minimize total costs 
both in production and in transportation.

CONCLUSIONS
This paper presents a series of models to deal with 
integrated production-transportation problem based on 
DEA. It offers an alternative approach to investigate the 
production process aiming at efficiently organizing inputs 
for given output targets based on empirical PPS formed by 
history data. Since DEA deals with production planning 
without a priori information about the production 
relationship, the proposed method has comparative 
advantage as compared with the extant researches related 
to integrated production-transportation planning.

When the production planning is under consideration, 
how to transport output surpluses in one DC to other DCs 
which have insufficient outputs should be considered 
at the same time. Our proposed transportation scheme 
consists of transportation trips among DCs and the 
transportation volumes. The solvability is also considered 
in this paper. A numerical example is used to illustrate the 
feasibility of the proposed models and sensitivity analysis 
is made to better reflect the result.

To sum up, this paper helps the DM to determine 
an efficient and attainable plan both for production 
and transportation for the planning horizon. In the 
meantime, the aggregate costs are minimized. In this 
paper, the inventory is ignored since we deal with a 
single period. Besides, there might be other specific 
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conditions corresponding to certain application scenario 
that are ignored either. Since we just provide general 
models which are amenable to further customization for a 
particular case, further research is still warranted, such as 
taking inventory condition into account, stochastic factors 
in demand predicted, and expanding the time horizon.
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APPENDIX: PROOFS OF PROPOSITIONS 
AND DATA

Proof of Proposition 1
First, we consider the solvability in VRS. To prove 
the sufficiency, we need to find a solution when 

1
1 1
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n n

j sj
j j

d d
= =
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all the DMUs follow the same production planning. 
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decision variables equal to 0. Hence, the solution set to 
(3) is non-empty, which guarantees the solvability of (3) 
when it is a MILP programming. Then there comes the 
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∉∑ ∑ . From the above, both the sufficiency 

and necessity are proved in the setting of VRS. 
Next ,  we take  a  c lose  examinat ion of  CRS-

setting. Once the market demand is forecasted, the 
exact value of drj is obtained. Hence, we can get 
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following linear equations for the j-th DMU:
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It is obvious that the coefficient matrix and augmented 

matrix of (6) have the same rank, and then problem (6) 
is solvable. Suppose the solution to (6) is (λ'1,j λ'2,j ···λ'n,j)

T 

( )1, 2, ,

T
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solution to (3) in the setting of CRS, while the rest 
variables all equal to 0. The boundness of is objective 
function is clearly as a result. Accordingly, optimal 
solution exists for (2) in the CRS situation no matter what 
the exact value of drj is.

Proof of Property 2
To begin with, new efficiency scores of all DMUs will 
be tackled first. Set x*
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Assume that there exists at least one DMU, namely 
DMUj0, whose new efficiency score of certain kind 
is strictly less than one. Then suppose the optimal 
value of model (7) for DMUj0 as θ*

j0,λ
*
j. Hence, we 

know that θ*
j0<1, However, from model (7), we have 
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value to model (3). As a consequence, the assumption that 
there exists at least one DMU with new efficiency score 
of certain return-to-scale technology strictly less than one 
is wrong. Then, the property is proved. �

In the main body of this paper, we carefully deliberate 
how to obtain the parameters in model (3). Followings 
are the data. Since the history production data, i.e., a 
two-input two-output production process, is presented 

by Lozano and Villa (2004), here we omit them for 
simplicity. The randomly generated input prices are 0.6038 
and 0.2722. The unit transportation price matrix for scene 
5 is given in Table 5. Here we consider it as a symmetric 
matrix. Predicted market demand for next time period is 
listed in Table 6. Table 7 represents outputs targets for 
CCR and BCC to complete data in Table 2 and Table 3. 

Table 5
Unit transportation Price Matrix for Scene 5

m* DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8 DC9 DC10

DC1 0 0.9501 0.7621 0.6154 0.4057 0.0579 0.2028 0.0153 0.4187 0.8381

DC2 0.9501 0 0.2311 0.4565 0.7919 0.9355 0.3529 0.1987 0.7468 0.8462

DC3 0.7621 0.2311 0 0.0196 0.6068 0.0185 0.9218 0.9169 0.8132 0.6038

DC4 0.6154 0.4565 0.0196 0 0.4451 0.5252 0.6813 0.486 0.8214 0.7382

DC5 0.4057 0.7919 0.6068 0.4451 0 0.4103 0.0099 0.2722 0.9318 0.2027

DC6 0.0579 0.9355 0.0185 0.5252 0.4103 0 0.3795 0.8913 0.4447 0.1763

DC7 0.2028 0.3529 0.9218 0.6813 0.0099 0.3795 0 0.8937 0.1389 0.1988

DC8 0.0153 0.1987 0.9169 0.486 0.2722 0.8913 0.8937 0 0.466 0.6721

DC9 0.4187 0.7468 0.8132 0.8214 0.9318 0.4447 0.1389 0.466 0 0.8318

DC10 0.8381 0.8462 0.6038 0.7382 0.2027 0.1763 0.1988 0.6721 0.8318 0

Table 6
Predicted Market Demand for Next Time Period

DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8 DC9 DC10

Output1 2 3 2 5 4 3 6 8 1 3
Output2 1 1 2 3 4 3 6 2 6 5

Table 7 
Outputs Targets for CCR and BCC in Next Period

CCR DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 DMU7 DMU8 DMU9 DMU10
SCENE1 8 3 3 5 2 1 2 6 4 3

4 5 6 1 6 2 2 1 3 3
SCENE2 8 3 3 5 2 1 2 6 4 3

4 5 6 1 6 2 2 1 3 3
SCENE3 8 3 3 5 2 1 2 6 4 3

4 5 6 1 6 2 2 1 3 3
SCENE4 9 3 3 5 2.8 1 1.2 5 4 3

5.4 5 4 3 6 0.6 2 1 3 3
SCENE5 12.222 3 4 5 3.6 0 0.4 1.778 4 3

7.333 4.933 4 3 6 0 0.667 1.067 3 3
SCENE6 5 3 7 1 2 1 6 6 3 3

3.4 3 7 1 2 1 6 3.6 3 3
SCENE7 5 3 2 5 2 2 6 6 3 3

3.4 3 2 5 2 2 6 3.6 3 3
SCENE8 5 3 7 1 2 1 6 6 3 3

3.4 3 7 1 2 1 6 3.6 3 3
SCENE9 8 5 2 5 6 1 2 1 4 3

5 5 2 5 6 1 2 1 3 3
BCC DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 DMU7 DMU8 DMU9 DMU10

SCENE1 7 3 3 5 2 1 2 7 4 3
To be continued
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CCR DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 DMU7 DMU8 DMU9 DMU10
4 5 6 1 6 2 2 1 3 3

SCENE2 7 3 3 5 2 1 2 7 4 3

4 5 6 1 6 2 2 1 3 3

SCENE3 7 3 3 5 2 1 2 7 4 3

4 5 5 1 5 3 3 1 3 3

SCENE4 5 3 3 5 2 4 2 6 5 3

3 5 3 3 5 3 3 2 3 3

SCENE5 5 4 3 5 2 4 2 5 4 3

3 4 3 3 5 3 3 3 3 3

SCENE6 5 4 3 5 2 4 2 5 4 3

3 4 3 3 5 3 3 3 3 3

SCENE7 5 4 3 5 2 4 2 5 4 3

3 4 3 3 5 3 3 3 3 3

SCENE8 5 4 3 5 2 4 2 5 4 3

3 4 3 3 5 3 3 3 3 3

SCENE9 5 4 3 5 2 4 2 5 4 3

3 4 3 3 5 3 3 3 3 3

Continued


