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Abstract:  The two end surface revolution axis relative rotation system and a kind of 
two qualities relative rotation system unified non-linear dynamics model are 
established, in the non-linear resiliency and the generalized damping force. And the 
chaos movement performance of unification system is studied, under weak cyclical 
strength condition as well. 
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1.  INTRODUCTION 
 

Carmeli established the relativity theory of rotation mechanics in 1985， in the process of studying 
rotational motion and rotation mechanics (Carmeli . M, 1985; Carmeli . M, 1986). Luo shao Kai 
established the relativity analysis theory of rotation mechanics (LUO, 2008), in 1996. In reference to the 
relativity theory, Literature (DONG & LIU, 2002; DONG & WANG, 2004; WANG, 1005; ZHAO & LIU, 
2006)established the constant coefficient linearity and the variable coefficient linear dynamics model of 
relative rotation between two random sections of circular cylinder and make qualitative and quantitative 
analysis to the system. Literature (WANG, 2005; SHI &LIU, 2007) established separately a kind of two 
end surface revolution axis system relative rotation non-linear dynamics model and a kind of two quality 
relative rotation nonlinear system dynamics model and discussed the system stability and the 
approximate solution. However, the above studies to rotation dynamics system have their limitations 
since they are confined to the condition that system recovery is linear resiliency (DONG & LIU, 2002; 
DONG & WANG, 2004; WANG, 2005; ZHAO & LIU, 2006; WANG, 2005; SHI &LIU, 2007). 

   This article illustrates the non-linear resiliency origin, then discusses the non-linear dynamics 
model unity for the above-mentioned two kinds of relative rotation dynamics system under the 
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non-linear resiliency and finally applies chaos system analysis theory to reveal unified system chaos 
movement performance under the influence of weak cyclical disturbing force. 

 

2.  NON-LINEAR RESILIENCY ORIGIN 
 

In the elastic system hooke's law expressed the elastic potential energy )(xU and the displacement 
square is proportional, namely 

                        2

2
1)( KxxU =                                                   

in which K  is the elasticity coefficient, then the system resiliency )(xg and the displacement is 
proportional. 

                            Kx
dx
dUxg ==)(

 
by Newton second law system equation of motion 

                           
0=+ Kxxm &&  

the above equation is linear, namely obeys the hooke's law the elastic system is linear. 
Therefore, in fact many elastic systems (including project in each kind of component and so on) 

does not obey above simple rule (LIU & PENG, 2004), the general elastic potential energy takes the 
following form 

L+++= 432
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1)( xxkxxU μλ

 
then may result in the system the resiliency 

L+++= 32)( xxkxxg μλ  
the equation of motion obtain which by such U(x) and g(x) is naturally non-linear. Takes how 

many items in the potential energy multinomial only then appropriate or correct, should act 
according to the concrete question and the request determined. 

 

3.  THE UNITY OF TWO KIND OF RELATIVE ROTATION 
NONLINEAR SYSTEM DYNAMICS MODEL  

 

If in literature (WANG, 2005), takes the damping force (damping moment) is  

)( 211 θθ && −−= fT C , )( 212 θθ && −= fT C , 

takes the non-linear elastic potential energy is 
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hen system resiliency 
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L+−+−+−=− 3
21

2
212121 )()()()( θθμθθλθθθθ kg  

from this may result in two end surface revolution axis system relative rotation the non-linear 
dynamics model is 

2212121

1212121
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&&&&&&

                                                         （1） 

J is the circular cylinder during random two lateral section rotation inertia, 1θ  and 2θ  respectively 

is two lateral section corners, 1T  and 2T respectively is two lateral section place sur- moments of force. 

In literature (SHI & LIU, 2007), takes also the non-linear elastic potential energy is )( 21 θθ −U , 
then a kind of two quality relative rotation nonlinear system dynamics model is   

2212122

1212111
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θθθθθ

θθθθθ
&&&&

&&&&
                                                                        （2） 

  In which 21 , II  for the system centralism quality rotation inertia, 1θ  and 2θ  respectively is two 

lateral section corners, 1F and 2F respectively is two lateral section place sur- moments of force.  

  by the equation (1) and (2) obtains 
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21212121 TT

J
g

J
f

J
−=−+−+− θθθθθθ &&&&&&                                          （3） 

)(1)()( 2112
21

21
21

21
21

21

21
21 FIFI

II
g

II
IIf

II
II

−=−
+

+−
+

+− θθθθθθ &&&&&&           （4） 

in the equation (3) and in (4), makes 

21 θθϕ −= ， J
a 12

1 =
or
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obtains two kind of systematic unified form relative rotation non-linear dynamics models is  

                      )()()( 21 tFgafa =++ ϕϕϕ &&&                                                                  （5） 
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4. THE HOMOCLINIC ORBIT AND CHAOS OF SYSTEM 
 
  In the equation (5), takes 

,)( 3
31 ϕϕϕ &&& uuf +=  ,)( 53 ϕϕϕ +−=g ,1 ε=a ,12 =a )sin()( tKtF e Ω= ε

 

 then obtains  
   tKuu e Ω=+−++ sin)( 533

31 εϕϕϕϕεϕ &&&&                                                                (6) 

Makes xyx &=ϕ= , ， then by equation (6) obtains  

))sin(( 3
31

53 yuyutKxxy
yx

e −−Ω+−=
=

ε&

&
                                                                (7) 

   
Supposes ,),()(,),( 53 TT xxyXfyxX −== T

e yuyutKtXg ])sin(,0[),( 3
31 −−Ω= ， 

results in matrix equation  

),()( tXgXfX ε+=&                                                                                                      (8) 

When 0=ε , the system (7) is non-disturbance system, namely  

                                 53 xxy
yx

−=
=
&

&
                                                                                      (9) 

Makes             

                                  0
0

53 =−=
==

xxy
yx

&

&
                                                                            (10) 

results in fixed point )0,1(−  )0,1( and the tertiary fixed point )0,0( . 

The system (9) secular equation is    

    0
053

10
42 =

−−
−

λ
λ

xx
                                      (11) 

42 53 xx −±=λ                                                 (12) 

When the fixed point is )0,1(± , i2±=λ , therefore )0,1(±  is the center. When the fixed point 

is )0,0( , 0=λ , must discuss the fixed point 4 nature. 

Because in 53 xx −  does not contain factor y ， therefore )0,0( is the isolated singular points. Not 
harasses system (9) is possible to write  

 53 cxxby
yx

k −=
=
&

&
                                                 (13) 

among them, 1== cbk , 3=k , k  is fixed point renumbering. According to the Briot-Bouquet lemma 
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may know , )0,0( nature is decided by k  , because of 01112 >== +×bbk  , therefore fixed point 

)0,0( is a saddle point. The system (9) Hamilton quantity is 

642
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2
1),( xxyyxH +−=                               (14) 

When 0)0,0( =H , existing connection saddle point )0,0(  same sleeping orbital { })(0 tq±
, the  

homoclinic orbit solution to be as follows 
Makes,  
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By equation (15) obtaining 
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Namely 
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= and the integral results in to (17) type, 
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coordinating, obtains   
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To x  derivation obtains  
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Therefore, the two homoclinic orbit parameter is   
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According to the homoclinic theory of BirkhoffSmale − ，when ε  is enough small, the system 

(7) possibly has under the Smale  horseshoe chaos. The system (7) Melnikov function is   

               

33110

030
3

0
10

0
00

0

)sin(

)(]))(()()(sin[

)),(())(()(

IuIutIK

dttytyutyuttK

dttttqgtqftM

e

e

−−Ω

=−−+Ω

=+∧=

±

∞+

∞− ±±

∞+

∞− ±±±

∫

∫
                (22) 

In which   

π
64

33

])
3

2([

2))((
322

2
20

1 =
+

== ∫∫
∞+

∞−

∞+

∞− ± dt
t

tdttyI  

π3
8197
4321

])
3

2([

4))((
622

2
40

3 =
+

== ∫∫
∞+

∞−

∞+

∞− ± dt
t

tdttyI  

dtt
t

dtt
t

tI ∫∫
∞+

∞−

∞+

∞−
Ω

+

Ω
=Ω

+
= )cos(

)43(

1
3

)sin(
)43(

63
2

122
32

 

By (22) type, may know when )(1
3311 uIuI

K
I

e

+> , this time must have 0t ′  to cause 

0)( 0 =′± tM , but 0)cos()( 00 ≠′ΩΩ±=′′± tIKtM e , therefore )( 0tM ±  has the single zero point, 

therefore produces the Smale  horse's hoof  and  the chaos. 

     Note: The precise value of integral I  is very difficult to work out, but easy to obtain the 
approximate value of integral I  applying numerical integration. 

 

5.   THE HETEROCLINIC ORBIT AND CHAOS OF SYSTEM 
 

In the equation(5),takes 3
31)( ϕϕϕ &&& uuf += ，

3)( ϕϕϕ −=g ， ε=1a ， 12 =a ，

)sin()( tKtF e Ω= ε ， 

Then obtains 

                           tKuu e Ω=−+++ sin)( 33
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    Makes xyx &=ϕ= , ,then by equation (23) obtains  
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),()( tXgXfX ε+=&                                                (25) 

    When 0=ε ,equation (25) is Hamilton system , obtains the heteroclinic orbit of system (LIU & 
CHEN, 2003) 
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Therefore, obtains 
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single zero point , therefore Smale horseshoe and the chaos. 
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6.   CONCLUSION  
 

This article elaborates that non-linear dynamics system of relative rotation of two end surface revolution 
axis has the unified dynamics model as one class two quality relative rotation non-linear dynamics 
system. Under the disturbance of weak cyclical force, the system is proved to have the homoclinic orbit, 
paving way for conditions that the system will engender Smale  horseshoe chaos movement. 
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