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Unified Model of Relative Rotation, Non-linear
Dynamics System and Chaos Movement Analysis*
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Abstract: The two end surface revolution axis relative rotation system and a kind of
two qualities relative rotation system unified non-linear dynamics model are
established, in the non-linear resiliency and the generalized damping force. And the
chaos movement performance of unification system is studied, under weak cyclical
strength condition as well.
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1. INTRODUCTION

Carmeli established the relativity theory of rotation mechanics in 1985 - in the process of studying
rotational motion and rotation mechanics (Carmeli . M, 1985; Carmeli . M, 1986). Luo shao Kai
established the relativity analysis theory of rotation mechanics (LUO, 2008), in 1996. In reference to the
relativity theory, Literature (DONG & LIU, 2002; DONG & WANG, 2004; WANG, 1005; ZHAO & LIU,
2006)established the constant coefficient linearity and the variable coefficient linear dynamics model of
relative rotation between two random sections of circular cylinder and make qualitative and quantitative
analysis to the system. Literature (WANG, 2005; SHI &L1U, 2007) established separately a kind of two
end surface revolution axis system relative rotation non-linear dynamics model and a kind of two quality
relative rotation nonlinear system dynamics model and discussed the system stability and the
approximate solution. However, the above studies to rotation dynamics system have their limitations
since they are confined to the condition that system recovery is linear resiliency (DONG & LIU, 2002;
DONG & WANG, 2004; WANG, 2005; ZHAO & LIU, 2006; WANG, 2005; SHI &L1U, 2007).

This article illustrates the non-linear resiliency origin, then discusses the non-linear dynamics
model unity for the above-mentioned two kinds of relative rotation dynamics system under the
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non-linear resiliency and finally applies chaos system analysis theory to reveal unified system chaos
movement performance under the influence of weak cyclical disturbing force.

2. NON-LINEAR RESILIENCY ORIGIN

In the elastic system hooke's law expressed the elastic potential energy U (X) and the displacement
square is proportional, namely

1
U(x) = = Kx?
(x) >

in which K is the elasticity coefficient, then the system resiliency g(X) and the displacement is
proportional.

du
9(X) === = Kx
dx
by Newton second law system equation of motion
m X + KX = 0

the above equation is linear, namely obeys the hooke's law the elastic system is linear.

Therefore, in fact many elastic systems (including project in each kind of component and so on)
does not obey above simple rule (LIU & PENG, 2004), the general elastic potential energy takes the
following form

1 1 1
U(X)==kx® + A3 + = x4+
(x) > 3 2
then may result in the system the resiliency

g(x) = kx + Ax® + x> +---
the equation of motion obtain which by such U(x) and g(x) is naturally non-linear. Takes how

many items in the potential energy multinomial only then appropriate or correct, should act
according to the concrete question and the request determined.

3. THE UNITY OF TWO KIND OF RELATIVE ROTATION
NONLINEAR SYSTEM DYNAMICS MODEL

If in literature (WANG, 2005), takes the damping force (damping moment) is
Tlc =—f (‘91 _9.2)’T2C = f(91 _92)’

takes the non-linear elastic potential energy is

1 1 1
U, -o,)= Ek(gl - ‘92)2 +§ﬂ(01 _92)3 +Z/J(91 _92)4 tee
hen system resiliency
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9(6,-6,)=k(0,-6,)+ 10, -6,)" + u(0, —6,)* +--

from this may result in two end surface revolution axis system relative rotation the non-linear
dynamics model is

%Jél +%J92 +1(6,-6,)+9(6,-6,) =T,
(1)

1 .. 1. . .
EJ191+§J92—f(@l—ﬁz)—g(ﬁl—ﬁz):Tz

J is the circular cylinder during random two lateral section rotation inertia, &, and @, respectively

is two lateral section corners, T, and T, respectively is two lateral section place sur- moments of force.

In literature (SHI & LIU, 2007), takes also the non-linear elastic potential energy is U (6, —6,),
then a kind of two quality relative rotation nonlinear system dynamics model is

|1é1 + f(él _6.’2)+ 9(91 _92) = Fl

.. .. (2)
I2‘92 - f(el_ez)_g(el_ez): Fz

6, .0

In which L, 1 for the system centralism quality rotation inertia, “1 and “2 respectively is two

F and F, respectively is two lateral section place sur- moments of force.

by the equation (1) and (2) obtains

lateral section corners,

.. 12 .. 12 6
61_62+Tf(el_02)+Tg(91_92):3(T1_T2) (3)
O S P I 1
6, -0, + | f(6,-6,)+ 9(91_92)2702':1_'1':2) (4)
1°2 1°2 1°2
in the equation (3) and in (4), makes
212 2 12
p=0,-6, , 17 or L +1, , 2777 or I, +1, ’
Il|2 |1|2

6
Ft)=—(T, -T,
® ‘J(T )Or%(IZFl_IlFZ)

1°2

obtains two kind of systematic unified form relative rotation non-linear dynamics models is

¢+a,f(p)+a,9(p)=F() (5)
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4. THE HOMOCLINIC ORBIT AND CHAQOS OF SYSTEM

In the equation (5), takes
f (@) =@ +U°, 9(p)=—p°+9°, 8 =¢, 8, =1, F(t) = &K, sin(Q)

then obtains
$+e(Up+Uy0°)—9° +¢° =K, sinQt
Makes X = @, Y = X, then by equation (6) obtains

X= y 7
y=x>—x°+&(K,sin(Qt) —u,y —u,y®) "

(6)

Supposes X = (X, y)", f(X)=(y,x* =x*)", g(X,t)=[0,K, sin(Qt) —u,y —u,y’]" -

results in matrix equation

X = f(X)+eg(X,t) ®)
When & = 0, the system (7) is non-disturbance system, namely
X=Y
9
y=x"-x° ®
Makes
x=y=0
. y3 5 (10)
y=x"-x>=0
results in fixed point (-1,0) (1,0 and the tertiary fixed point (0,0) -
The system (9) secular equation is
0-4 1 B 1)
3x? -5x* 0-4

A =+4/3x% —5x* (12)
When the fixed pointis (+1,0), 4 = ++/2i . therefore (+1,0) is the center. When the fixed point
is (0,0), 4 =0, must discuss the fixed point 4 nature.

Because in X° — X° does not contain factor y - therefore (0,0) is the isolated singular points. Not

harasses system (9) is possible to write

X=Yy
. 3 5 (13)
y =Db, x* —cx
among them, b, =¢ =1 k =3 Kk is fixed point renumbering. According to the Briot-Bouquet lemma
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may know , (0,0) nature is decided by K , because of b, =h, ., =1> 0, therefore fixed point
(0,0) is a saddle point. The system (9) Hamilton quantity is
1 1 1
H(x,y)==y?—>x*+=x° (14)
(xy) =2y =X+
When H (0,0) = 0, existing connection saddle point (0,0) same sleeping orbital {qo (t)} the
*

homoclinic orbit solution to be as follows

Makes,
H(0,0) = iy2 it g
2 4 6 (15)
X=Y
By equation (15) obtaining
y—JrX—2 1—Ex2 (16)
2 3
Namely
de_,dt
x? 1—gx2 2
3 (17)

2
Makes X = \/;CO'[ Z and the integral results in to (17) type,

—\/Zcotz:iL+C (18)
3 2
_9y2

v X 3
COt Z = ———=—— substitutes (18) type, attentionwhen t =0, X, = i\/;, C =0 .after

Vx
6
e o

coordinating, obtains
33t

To X derivation obtains

=t 20
(32 +4) 2 “
Therefore, the two homoclinic orbit parameter is
6
X0 (t) = +,|——

O 3t2+4 o
21

O L

) (32 +4) 2
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According to the homoclinic theory of Smale — Birkhoff > when ¢ is enough small, the system
(7) possibly has under the Smale horseshoe chaos. The system (7) Melnikov function is

M. (to) = [ F(a(®) A 9@ (1), t+t;)dt =

[ TK, sin(t+t5) —u,yS (0 - ug (Y2 (©)°Iy? ()t = (22)
K, I'sin(Qt,) —u, I, —u,l,

In which
|1=j_+:(y§(t))2dt=j_+;° 2 dt:i}f;z
[t® (\/—) I’
j (y+(t)) dt—j 4t 4321\/—
f

w346t w1

l=| ————sin(Qt)dt = —————cos(Qt)dt
L. R I‘°°(3t 244y

1
K—(I1u1+ l,us)|,

M, (t;) =0, but M (t;) = £QK_1 cos(Qt;) # 0, therefore M, (t,) has the single zero point,
therefore produces the Smale horse's hoof and the chaos.

By (22) type, may know when |I| > this time must have t(') to cause

Note: The precise value of integral | is very difficult to work out, but easy to obtain the
approximate value of integral | applying numerical integration.

5. THE HETEROCLINIC ORBIT AND CHAOS OF SYSTEM

In the equation(5)takes f(p)=U,p+U0° - (@) =p—-¢° > a,=¢ - a,=1
F(t) = &K, sin(Qt) -
Then obtains
P+ e +U0°)+p—¢° =K _sinQt (23)
Makes X = @, Y = X ,then by equation (23) obtains
X=y
y=—x+x>+&(K,_sin(Qt) —u,y —u,y?®)

Supposes X = (X, ¥)", f(X) = (y,~x+x*)T, g(X,t) =[0, K, sin(Qt) —u,y —u,y*]"
results in matrix equation

(24)
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X = f(X)+eg(X,t) (25)
When & = 0 ,equation (25) is Hamilton system , obtains the heteroclinic orbit of system (LIU &
CHEN, 2003)

a: () =[x (@), y: O [+th(—t) —SeC h? ( )]T (26)
By (12)type , obtains
F@ )=y ®O—x O+ O)°T
g(qg (1), t+1,) =[0,K,sinQ(t +t,) - U1yg (1) —u, (yg ®)°1
f(a7 (©) A 9(a7 (©),t+1,) =[K, sinQ(t +t5) —u, y2 (£) — U (y2 (£)°1y2 (1)
therefore - equation (25) Melnikov function is

MY (o) = [ (a () A g(a’ (1), t+ ;)

= [TIK.sinQ(t + 1) —uyy2 (0 - u (X )y @t @)
=K I, —u,l, —u,l, —hl, —Kl,

e
Because

1, = f:yg (t)sin Q(t +t,)dt = [ f:(sin(Qt) cos(Qt, ) + cos(Qt) sin(Q, ) y° (t)dt

=sin(Qt, )Ij:cos(Qt) yo(t)dt = +/27 esc h(ﬂ Qr)sin(Qt,)

:J._:O(yg(t))zdt =%_|'_+:sech4 \/_tdt —£J' sech*udu =

»\/E 400 2 2
7j_oo(l—th u)dthu 25\/5

=] TR o= seon® Zia= Y2 [ seonuau -

g [ “a-3thu +3th?u — th*u)dthu = %

Therefore, obtains
M (t,) = +/27K , csc h(ﬂgn)sin(gto) —3\/§ul —£u3 (28)

1 2
By (28) type , may knowwhen|K |< (—u1 + = 5 u )Sh(£ Qu)|, this time must t, to cause

M, (t;)=0 > butM_(t;) = ++/2702¢s¢ h(% Qr)cos(Qt;) =0, therefore M, (t,) has the

single zero point , therefore Smale horseshoe and the chaos.
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6. CONCLUSION

This article elaborates that non-linear dynamics system of relative rotation of two end surface revolution
axis has the unified dynamics model as one class two quality relative rotation non-linear dynamics
system. Under the disturbance of weak cyclical force, the system is proved to have the homoclinic orbit,

paving way for conditions that the system will engender Smale horseshoe chaos movement.
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